首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Wireless Mesh Networks (WMNs) are an emerging technology that could revolutionize the way wireless network access is provided. The interconnection of access points using wireless links exhibits great potential in addressing the “last mile” connectivity issue. To realize this vision, it is imperative to provide efficient resource management. Resource management encompasses a number of different issues, including routing. Although a profusion of routing mechanisms has been proposed for other wireless networks, the unique characteristics of WMNs (e.g., wireless backbone) suggest that WMNs demand a specific solution. To have a clear and precise focus on future research in WMN routing, the characteristics of WMNs that have a strong impact on routing must be identified. Then a set of criteria is defined against which the existing routing protocols from ad hoc, sensor, and WMNs can be evaluated and performance metrics identified. This will serve as the basis for deriving the key design features for routing in wireless mesh networks. Thus, this paper will help to guide and refocus future works in this area.
Brent IshibashiEmail:
  相似文献   

2.
Wireless mesh networks can provide low-cost solutions for extending the reach of wireless access points by using multi-hop routing over a set of stationary wireless routers. The routing protocol for these networks may need to address quality considerations to meet the requirements of the user. In this paper, we present a quality based routing protocol for wireless mesh networks that tries to maximize the probability of successful transmissions while minimizing the end-to-end delay. The proposed routing protocol uses reactive route discoveries to collect key parameters from candidate routes to estimate the probability of success and delay of data packets transmitted over them. To achieve accurate route quality assessments, a new route quality metric is proposed that uses performance models of data packet transmissions as opposed to estimating route quality from the transmission of control packets, which have different transmission characteristics. These models are developed after careful evaluations of multi-hop wireless transmissions and validated by computer simulations. Relevant parameters that can be used to assess the route quality metric using these models are explained. Extensive performance evaluations of the proposed quality based routing protocol are presented and its benefits in comparison to some other known routing protocols are discussed.  相似文献   

3.
4.
基于遗传算法的无线网状网QoS多播路由算法   总被引:1,自引:1,他引:0  
探讨了基于遗传算法的无线网状网QoS多播路由算法,选用边集表示方式对多播树进行编码,其空间复杂度为O(N),给出了该编码方式下的初始种群生成算法RandWalkMT,同时对传统的遗传操作进行改进使子代个体中不会产生非法多播树,从而避免了复杂的惩罚机制或多播树修复算法。实验表明该算法收敛快且性能较好。  相似文献   

5.
In this paper we consider wireless mesh networks (WMNs) used to share the Internet connectivity of sparsely deployed fixed lines with heterogeneous capacity, ranging from ISP-owned high-speed links to subscriber-owned low-speed connections. If traffic is routed in the mesh without considering the load distribution and the bandwidth of Internet connections, some gateways may rapidly get overloaded because they are selected by too many mesh nodes. This may cause a significant reduction of the overall network capacity. To address this issue, in this paper we first develop a queuing network model that predicts the residual capacity of network paths, and identifies network bottlenecks. By taking advantage of this model, we design a novel Load-Aware Route Selection algorithm, named LARS, which improves the network capacity by allocating network paths to upstream Internet flows so as to ensure a more balanced utilization of wireless network resources and gateways’ Internet connections. Using simulations and a prototype implementation, we show that the LARS scheme significantly outperforms the shortest-path first routing protocol using a contention-aware routing metric, providing up to 240% throughput improvement in some network scenarios.  相似文献   

6.
Wireless mesh networks (WMNs) provide cost effective solutions for setting up a communications network over a certain geographic area. In this paper, we study strategic problems of WMNs such as selecting the gateway nodes along with several operational problems such as routing, power control, and transmission slot assignment. Under the assumptions of the physical interference model and the tree-based routing restriction for traffic flow, a mixed integer linear programming (MILP) formulation is presented, in which the objective is to maximize the minimum service level provided at the nodes. A set of valid inequalities is derived and added to the model in an attempt to improve the solution quality. Since the MILP formulation becomes computationally infeasible for larger instances, we propose a heuristic method that is aimed at solving the problem in two stages. In the first stage, we devise a simple MILP problem that is concerned only with the selection of gateway nodes. In the second stage, the MILP problem in the original formulation is solved by fixing the gateway nodes from the first stage. Computational experiments are provided to evaluate the proposed models and the heuristic method.  相似文献   

7.
8.
无线网状网(Wireless Mesh Network,WMN)是一种多跳、分布式的无线网络,可以提供多种宽带多媒体业务。目前,无线网状网的路由技术的研究还处于起步阶段。首先介绍当前几种著名的无线网状网路由协议,并分析了这些协议的不足,在此基础上提出一种新的路由算法,该算法综合考虑了链路质量、节点负载均衡、信道干扰三个主要因素,能够显著地提高网络性能。分析与仿真结果表明,该算法能显著地提高网络吞吐量和降低传输延时,并且具有良好的抗干扰性。  相似文献   

9.
基于遗传算法的无线网状网QoS路由算法*   总被引:1,自引:0,他引:1  
对基于遗传算法的多QoS约束路由算法进行了研究,实验结果表明,该算法在无线网状网中是一种高效的路由算法.  相似文献   

10.
We study the problem of on-line joint QoS routing and channel assignment for performance optimization in multi-channel multi-radio wireless mesh networks, which is a fundamental issue in supporting quality of service for emerging multimedia applications. To our best knowledge, this is the first time that the problem is addressed. Our proposed solution is composed of a routing algorithm that finds up to k but not necessarily feasible paths for each demand and an on-demand channel (re)assignment algorithm that adapts network resources to maintain feasibility of one of the paths. We also study the problem of obtaining an upper bound on the network performance. First, we consider an artificial version of the problem, in which all demands arrive at the same time, and formulate it as a mixed integer linear programming model. To tackle the complexity of the model, it is relaxed that provides a tight upper bound while improves solution time up to 3.0e+5 times. Then, we model the original problem by extending the relaxed model to consider dynamic demands, it leads to a huge model; thus, we develop another model, which is equivalent to the first one and is decomposable. It is broken down by a decomposition algorithm into subproblems, which are solved sequentially. Our extensive simulations show that the proposed solution has comparable performance to the bound obtained from the decomposition algorithm; it efficiently exploits available channels, and needs very few radios per node to achieve high network performance.  相似文献   

11.
Wireless mesh networks (WMNs) have been attracting significant attention due to their promising technology. The WMN technology is becoming a major avenue for the fourth generation of wireless mobility. Communication in large-scale wireless networks can create bottlenecks for scalable implementations of computationally intensive applications. A class of crucially important communication patterns that have already received considerable attention in this regard are group communication operations, since these inevitably place a high demand on network bandwidth and have a consequent impact on algorithm execution times. Multicast communication has been among the most primitive group capabilities of any message passing in networks. It is central to many important distributed applications in science and engineering and fundamental to the implementation of higher-level communication operations such as gossip, gather, and barrier synchronisation. Existing solutions offered for providing multicast communications in WMN have severe restriction in terms of almost all performance characteristics. Consequently, there is a need for the design and analysis of new efficient multicast communication schemes for this promising network technology. Hence, the aim of this study is to tackle the challenges posed by the continuously growing need for delivering efficient multicast communication over WMN. In particular, this study presents a new load balancing aware multicast algorithm with the aim of enhancing the QoS in the multicast communication over WMNs. Our simulations experiments show that our proposed multicast algorithm exhibits superior performance in terms of delay, jitter and throughput, compared to the most well known multicast algorithms.  相似文献   

12.
Increasing the capacity of wireless mesh networks has motivated numerous studies. In this context, the cross-layer optimization techniques involving joint use of routing and link scheduling are able to provide better capacity improvements. Most works in the literature propose linear programming models to combine both mechanisms. However, this approach has high computational complexity and cannot be extended to large-scale networks. Alternatively, algorithmic solutions are less complex and can obtain capacity values close to the optimal. Thus, we propose the REUSE algorithm, which combines routing and link scheduling and aims to increase throughput capacity in wireless mesh networks. Through simulations, the performance of the proposal is compared to a developed linear programming model, which provides optimal results, and to other proposed mechanisms in the literature that also deal with the problem algorithmically. We observed higher values of capacity in favor of our proposal when compared to the benchmark algorithms.  相似文献   

13.
多信道技术通过对数据流量进行分流,能够减少链路间干扰,从而提升网络容量。首先针对认知无线mesh网络提出一种有效的联合路由的分布式信道分配策略,该信道分配策略主要宗旨是维持邻域内信道差异。仿真结果表明,新的信道分配算法相比于无线多信道网络中基于链接的信道分配算法,平均吞吐量大约提高了50%,平均时延降低了约50%。在信道约束的情况下,进一步引入了信道合并算法。仿真结果表明,执行信道合并算法后,网络平均吞吐量、时延性能得到了进一步改善。  相似文献   

14.
In this paper a novel interference-based formulation and solution methodology for the problem of link scheduling in wireless mesh networks is proposed. Traditionally, this problem has been formulated as a deterministic integer program, which has been shown to be -hard. The proposed formulation is based on dynamic programming and allows greater flexibility since dynamic and stochastic components of the problem can be embedded into the optimization framework. By temporal decomposition we reduce the size of the integer program and using approximate dynamic programming (ADP) methods we tackle the curse of dimensionality. The numerical results reveal that the proposed algorithm outperforms well-known heuristics under different network topologies. Finally, the proposed ADP methodology can be used not only as an upper bound but also as a generic framework where different heuristics can be integrated.  相似文献   

15.
In this paper, we propose a novel Route Maintenance scheme for IEEE 802.11 wireless mesh networks. Despite lack of mobility and energy constraints, reactive routing protocols such as AODV and DSR suffer from frequent route breakages in 802.11 based infrastructure wireless mesh networks. In these networks, if any intermediate node fails to successfully transmit a packet to the next hop node after a certain number of retransmissions, the link layer reports a transmission problem to the network layer. Reactive routing protocols systematically consider this as a link breakage (and therefore a route breakage). Transmission failures can be caused by a number of factors e.g. interference or noise and can be transient in nature. Frequent route breakages result in significant performance degradation. The proposed mechanism considers multiple factors to differentiate between links with transient transmission problems from those links which have permanent transmission problems and takes a coherent decision on link breakage. The proposed mechanism is implemented in AODV for single-radio single-channel mesh network and an extension is incorporated in multi-radio multi-channel scenarios. Simulation results show substantial performance improvement compared to classical AODV and local route repair schemes.  相似文献   

16.
In practical wireless mesh networks (WMNs), gateways are subject to hard capacity limits on the aggregate number of flows (in terms of bit rate) that they can support. Thus, if traffic is routed in the mesh network without considering those constraints, as well as the traffic distribution, some gateways or intermediate mesh routers may rapidly get overloaded, and the network resources can be unevenly utilized. To address this problem, in this paper we firstly develop a multi-class queuing network model to analyze feasible throughput allocations, as well as average end-to-end delay, in heterogeneous WMNs. Guided by our analysis, we design a Capacity-Aware Route Selection algorithm (CARS), which allocates network paths to downstream and upstream Internet flows so as to ensure a more balanced utilization of wireless network resources and gateways’ fixed connections. Through simulations in a number of different network scenarios we show that the CARS scheme significantly outperforms conventional shortest path routing, as well as an alternative routing method that distributes the traffic load on the gateway nodes to minimize its variance.  相似文献   

17.
Sensors are tiny electronic devices having limited battery energy and capability for sensing, data processing and communicating. They can collectively behave to provide an effective wireless network that monitors a region and transmits the collected information to gateway nodes called sinks. Most of the applications require the operation of the network for long periods of times, which makes the efficient management of the available energy resources an important concern. There are three major issues in the design of sensor networks: sensor deployment or the coverage of the sensing area, sink location, and data routing. In this work, we consider these three design problems within a unified framework and develop two mixed-integer linear programming formulations. They are difficult to solve exactly. However, it is possible to compute good feasible solutions of the sink location and routing problems easily, when the sensors are deployed and their locations in the sensor field become known. Therefore, we propose a tabu search heuristic that tries to identify the best sensor locations satisfying the coverage requirements. The objective value corresponding to each set of sensor locations is calculated by solving the sink location and routing problem. Computational tests carried out on randomly generated test instances indicate that the proposed hybrid approach is both accurate and efficient.  相似文献   

18.
针对多跳无线传感器网络能量受限的特点,以提高网络寿命为目标,建立基于最大最小节点寿命的线性规划网络模型。当传感器节点失效时,根据网络的拓扑结构动态更新节点的路由。仿真分析结果表明:基于网络拓扑结构变化动态更新节点路由的方法能够拓展网络寿命,大幅度地增加基站接收信息的数量和提高节点能量的使用效率。  相似文献   

19.
针对无线网状网(WMN)的特点,对WMN中的资源管理问题和跨层设计方法进行了介绍,分析了跨层设计在WMN中的资源管理和选路设计中的重要性;对资源分配和选路联合优化问题以及现有的解决方法及研究进展进行了综述和分析,提出了待解决的问题和一些解决思想。  相似文献   

20.
Indranil  Enes  Ling He   《Decision Support Systems》2005,38(4):529-538
Design of survivable wireless access networks plays a key role in the overall design of a wireless network. In this research, the multi-period design of a wireless access network under capacity and survivability constraints is considered. Given the location of the cells and hubs, the cost of interconnection, and the demands generated by the cells, the goal of the designer is to find the best interconnection between cells and hubs so that the overall connection cost is minimized and the capacity and the survivability constraints are met. Integer programming formulations for this problem are proposed and the problems are solved using heuristic methods. Using different combination of network sizes, demand patterns and various time periods, a number of numerical experiments are conducted and all of them are found to yield high quality solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号