首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Frost layers formed on the front and rear surfaces of a horizontal cylinder during cross flow are found to be thicker than those at the top and bottom surfaces where the flow separation is nearly initiated. This observation was obtained in an experimental study carried out to examine frost formation on a horizontal cylinder given a cross flow condition. The thickness of the frost layer and the temperature distribution in the cylinder were measured for various experimental conditions. The local heat flux around the cylinder and the effective thermal conductivity of the frost layer were likewise evaluated, while thickness and surface temperature of the frost layer around the cylinder were measured periodically. These measurements were obtained by varying the Reynolds number, temperature, and humidity. The dew point temperature of the inlet air, however, was kept below the freezing point throughout the experiment. Results also reveal that inlet air velocity, temperature, and humidity affect thickness and thermal conductivity of the frost layer.  相似文献   

2.
水平冷面上霜晶生长规律的实验研究   总被引:3,自引:0,他引:3  
对水平铜冷面上的结霜过程进行了显微实验观察,实验结果表明:结霜过程基本上都经历了水珠生成、长大、冻结、初始霜晶生成、长大以及霜层成长等过程。根据霜晶的外观形状特点将初始霜晶分成了四大类,讨论了初始霜晶形状随冷面温度和空气相对湿度的变化规律,指出冷面温度是影响霜晶形状的主要因素,而空气的相对湿度对霜晶形状也有一定影响。  相似文献   

3.
This paper numerically evaluates some of the parameters involved in modeling the process of frost formation on flat cold surfaces subject to the flow of humid air. The model employs one-dimensional transient formulation based upon the local volume averaging technique. The modeling process was validated by comparison with available experimental data. Numerical experiments were realized to determine the best initial values of the diffusivity, initial radius and geometry of the ice crystals. This model was applied to the known case of flow of humid air over a single flat cold plate to predict the frost temperature, density and thickness distribution along the flow direction and also the void fraction. The results were compared with available results in the literature. The model was then extended to solve the case of flow of humid air between two parallel cold plates for which there are no available results.  相似文献   

4.
This paper proposes a mathematical model to predict the frost properties and heat and mass transfer within the frost layer formed on a cold plate. Laminar flow equations for moist air and empirical correlations for local frost properties are employed to predict the frost layer growth. Correlations for local frost density and effective thermal conductivity of the frost layer, derived from various experimental data, are expressed as a function of the various frosting parameters: the Reynolds number, frost surface temperature, absolute humidity and temperature of the moist air, cooling plate temperature, and frost density. The numerical results are compared with experimental data to validate the proposed model, and those agree well with the experimental data within a maximum error of 10%. Heat and mass transfer coefficients obtained from the numerical analyses are also presented. The results show that the model for the frost growth using the correlation of the heat transfer coefficient without considering the air flow has a limitation in its application.  相似文献   

5.
This study presents a mathematical model to predict the frosting behavior on a cold surface under turbulent flow. The model consists of the standard κε model for turbulent flow and the diffusion equation for the frost layer. The numerical results show that turbulent flow promotes the growth of the frost layer on the cold surface, compared to the laminar flow. Increase in air velocity has little effect on mass transfer under turbulent flow, while frost growth under laminar flow is influenced by the air velocity. With constant air humidity, the frost layer thickness increases with decreasing air temperature, while the relationship for the frost density is reversed. The effect of the air temperature on the mass flux is negligible, compared to the other frosting parameters.  相似文献   

6.
本文制作了微机械加工的阵列方微柱金属表面,实验研究了其在环境温度Tatm=24℃,相对湿度RH=17%,不同冷表面温度(Tw=-5.2、-10.1、-15.2℃)及不同试件尺寸时,自然对流条件下的结霜特性,分析了表面温度和持续时间对霜层厚度和霜重量的影响,提出了阵列方微柱表面的抗结霜机理,并通过仿真模拟进行了验证。结果表明:当冷表面温度为-10℃时,阵列方微柱表面的霜层质量比平表面降低了约32%;自然对流使微柱之间产生了空气涡旋,水蒸气会随着空气涡旋流动而无法在凹槽内停留,霜仅形成在微柱顶部,凹槽内不结霜,从而显著减少了有效结霜面积;当微柱间距L过大时,凹槽内会形成冷凝液滴并结霜。  相似文献   

7.
准稳态结霜模型求解与分析   总被引:1,自引:0,他引:1  
王军  陈雁  高才 《制冷》2010,29(4):16-20
介绍了结霜过程的一维准稳态数学模型,并对该模型进行求解,分析了结霜过程的特征,讨论了湿空气流速、相对湿度及冷面温度变化对结霜过程的影响。计算结果表明:结霜过程是表面凝华和内部凝华共同作用的结果;较大的流速和相对湿度、较低的冷面温度对应较快的结霜速度;结霜过程中霜层密度的增长存在临界点,临界点之后,进一步的结霜并不能使传热恶化的速度加快。  相似文献   

8.
In this paper a semi-empirical model describing heat and mass transfer on a cylinder surface in humid air cross flow under supersaturated frosting conditions is presented. The lack of psychrometric data in the supersaturated zone of the psychrometric chart has historically impeded the ability of researchers to accurately predict heat and mass transfer in supersaturated air. The work described in this paper has been partially made possible by developing a systematic procedure to compute the properties of supersaturated moist air, especially in the low temperature zone of the psychrometric chart. Development of such a capability will allow us to predict the amount of frost collected on a coil, the frost deposition and coil heat transfer rates, frost thickness and frost surface temperature, and other important coil frost parameters under supersaturated conditions.  相似文献   

9.
对低温罩表面结霜过程进行了数值模拟研究。通过能量和质量平衡方程建立了低温罩结霜的物理模型,考虑了霜层厚度增加的传质和传热过程。据此分析了来流空气的温度、相对湿度、速度及冷壁面温度对霜层表面温度和霜层厚度的影响。计算结果表明,来流空气的温度及冷壁面温度对结霜的影响较大,而来流空气的速度和相对湿度对结霜的影响则较小。最后指出了对低温罩在加注低温液体时采取隔热防霜措施的必要性。  相似文献   

10.
空气源热泵蒸发器表面霜层生长特性实验研究   总被引:7,自引:1,他引:6  
在室外环境空气温度-15℃~5℃、相对湿度65%~90%范围内,对一台空气源热泵室外换热器表面霜层生长特性及热泵系统动态性能进行了实验研究。实验结果表明,翅片表面霜层厚度呈分段增长模式,在结霜初始段,霜层主要由粒状冰晶组成,并逐渐形成柱状冰晶,其厚度增长较快;在第二阶段为柱状冰晶主要在其半径方向生长,霜层厚度增长速度减慢;而在第三阶段,柱状冰晶主要在其高度方向生长,逐渐形成针状冰晶,霜层厚度增长速度迅速增大至第二阶段的3~5.8倍。对实验结果的分析表明,热泵机组性能恶化主要是由于蒸发器表面温度下降、霜晶形态变化引起霜层厚度快速增长及空气流动阻力增加导致风机流量下降三个因素之间形成的恶性循环所致,其中换热器表面温度下降引起的霜晶形态变化起到了至关重要的作用。  相似文献   

11.
刘斌  杨永安  杨昭 《制冷学报》2004,25(4):40-42
分析结霜因素,有助于加强理解霜的形成及防止方法.在假设条件的基础上,通过考虑能量和质量的平衡建立结霜的物理模型,分析了进口空气的温度、相对湿度、速度及冷面温度对结霜的影响,包括结霜量及霜层厚度.计算结果表明来流空气的温度与及冷表面温度对结霜影响较大,而来流空气的速度影响较小.  相似文献   

12.
This study experimentally investigated the frost growth on louvered folded fins in microchannel heat exchangers when used in outdoor air-source heat pump systems. The effects of surface temperature, fin geometries, and air environmental conditions were studied. The overall aim was to isolate and quantify the effect of geometry from surface temperature effects. Experimental data of frost weight, local frost thickness, air pressure drop across the coils, time of frost–defrost cycles and heat transfer rates were recorded. Data showed that the frosting time and the frost growth rates depended mainly on the local fin surface temperature. Lower fin density was beneficial because it delayed the blockage of the air flow. The fin length and fin depth had minor effects on frosting performance. The air humidity had a fairly significant effect on rate of frost formation while air velocity seemed to have a small effect on the frost growth rate.  相似文献   

13.
对一台空气源热泵空调器在不同环境条件下室外换热器的动态结霜性能进行了实验研究,分析了进风温、湿度对热泵空调器结霜量及霜层厚度的影响。实验中考虑了结霜引起的热泵系统蒸发温度及风机流量的变化,采用显微照相法测量翅片表面霜层厚度,结霜量则通过测量蒸发器进出口含湿量的方法来获得。实验结果表明,室外换热器结霜量随时间线性增长,而翅片表面霜层厚度则分为初始段、匀速增长段和快速增长段三个阶段;在结霜循环的最后20%~30%的快速增长段内霜层生长速率大大加快,可达匀速生长段霜层生长速率的2.4,3.3倍。对于不同的工况,蒸发器均在进风温度0~3℃附近时结霜最为严重,且相对湿度对霜层厚度的影响要大于对结霜量的影响。  相似文献   

14.
霜层生长初期冰晶体分布状况实验研究   总被引:3,自引:0,他引:3  
研究霜层的结构对于理解结霜现象有着重要的意义。利用自行研制的图像放大及采集系统,对霜层生长初期冰晶体的形态进行显微观测,得到了不同生长条件下冰晶体的图像。随后采用数字图像处理方法,将原图像转换为二值图。通过对图像的分析,发现霜层的生长初期冰晶体的分布与充分生长的霜层有所不同,此时霜层靠近冷表面固含率最大;随着高度的增长,固含率以近似线性的方式减小。实验还发现,对霜层生长初期影响最大的两个因素是冷表面的温度和空气的相对湿度。随着冷表面温度的降低,霜层的高度明显增长,冰晶体沉积量增加,而平均密度的变化则不明显;随着空气相对湿度的增加,霜层的高度、平均密度以及冰晶体总的沉积量都有所增加。空气温度对霜层生长的影响不明显。  相似文献   

15.
真空冷冻干燥过程中,从物料中升华出来的水分在真空泵的抽吸作用下,不断地在捕水器(也即冷阱)表面结霜,随着霜在捕水器表面不断凝结,致使其捕水效率不断降低,对真空系统形成不利的影响。但目前,对于低温、低压下的结霜机理研究极少,本文介绍了国内外有关低温冷壁面结霜的研究现状,并分析研究了真空冷冻干燥系统中冷壁面结霜过程中存在的问题。  相似文献   

16.
Heat and mass transfer under frosting conditions   总被引:3,自引:0,他引:3  
The effect of frost formation on heat transfer between a test cylinder and its gaseous environment was studied experimentally. The main parameters discussed in the paper are: the total heat flux, the steady-state convective heat transfer coefficient, and the mass of frost adhering to the test cylinder. The emphasis of the paper is on the thermal conducivity of frost. The data indicate that the diffusion mechanisms of moisture transfer within the frost layer causes the frost density and thermal conductivity to increase with time. Frost thermal conductivity is a function of the local temperature and average density. The can be used by designers of low temperature systems with uninsulated surfaces.  相似文献   

17.
Processes involving the transfer of heat from a humid air stream in laminar flow to a horizontal plate with the simultaneous deposition of frost is of importance in a variety of refrigeration equipment. The accumulating frost layer impedes the heat flow to the cooling surface. The present study is carried out to determine both theoretically and experimentally the factors that influence, frost formation on a cold surface and to correlate the Nusselt and Sherwood numbers with these factors.Experiments were conducted on a 600 mm long, flat horizontal plate, the Reynolds number and the relative humidity of the impinging air stream were varied from 30 000 to 140 000 and from 40% to 60% respectively, while the average surface temperature was near - 18°C. Empirical correlations of the Nusselt number and Sherwood number are presented.  相似文献   

18.
Frost formation and heat transfer on circular cylinders in cross-flow   总被引:1,自引:0,他引:1  
When humid air comes into contact with a surface whose temperature is below the dew point of water vapour in air and also below the freezing point, frost deposition takes place over the surface. Previous studies indicate that the heat transfer rate increases at the initial stages of deposition since the rough frost surface acts as a finned one. As the frost thickens, however, the insulating effect of the frost layer predominates resulting in a reduction in the heat transfer rate. This paper presents a transient model to predict the frosting process over a circular cylinder in a cross-flow of humid air. the transfer parameters are computed employing a numerical solution of the momentum, energy and diffusion boundary-layer equations along with the continuity equation, using a finite difference scheme. Empirical correlations for thermal conductivity and density are utilized for closure purposes. Model results are compared with existing experimental data and with numerical data of previous investigators and are found to agree well in the applicable temperature and humidity ranges of the frost density and conductivity correlations.  相似文献   

19.
Processes involving the transfer of heat from a humid air stream in laminar flow to a horizontal plate with the simultaneous deposition of frost is of importance in a variety of refrigeration equipment. The accumulating frost layer impedes the heat flow to the cooling surface. The present study is carried out to determine both theoretically and experimentally the factors that influence, frost formation on a cold surface and to correlate the Nusselt and Sherwood numbers with these factors.Experiments were conducted on a 600 mm long, flat horizontal plate, the Reynolds number and the relative humidity of the impinging air stream were varied from 30 000 to 140 000 and from 40% to 60% respectively, while the average surface temperature was near - 18°C. Empirical correlations of the Nusselt number and Sherwood number are presented.  相似文献   

20.
In the present work Artificial Neural Network is used to predict frost thickness and density around a cooled horizontal circular cylinder having constant surface temperature under natural convection for different ambient conditions. The database for ANN generated from the experimental measurements. In the present work a multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice to estimate frost growth due to accurate and faster training procedure. Experimental measurements are used for training and testing the ANN approach and comparison is performed among the soft programming ANN and experimental measurements. It is observed that ANN soft programming code can be used more efficiently to determine frost thickness and density around a cold horizontal cylinder. Based on the developed ANN wide range of frost formation over various cylinder diameters are determined and presented for various conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号