首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, performances of Ranque-Hilsh Vortex Tubes (RHVTs) were experimentally investigated under three different situations based on inlet pressure and the ratio of mass flow rate of the cold stream to the mass flow rate of the inlet stream (ξ). 1st situation is the conventional RHVT. 2nd situation is the threefold cascade type RHVT. Here three RHVTs were used. 3rd situation deals with the six cascade type RHVT. In this case, six RHVTs were used. When all the test results under Pi = 360 kPa and Pi = 400 kPa pressure conditions are compared, it is found that the best performance occurs at the 3rd situation. Moreover, the performance of the 3rd situation at Pi = 400 kPa pressure is higher than that at Pi = 360 kPa. Maximum values of ΔT and ξ are obtained as 67.6 °C and 0.9 for 3rd situation.  相似文献   

2.
3.
Energy separation performance of vortex tube can be improved by using a divergent hot tube. Experiments are carried out to investigate the influence of the geometrical parameters on vortex tube refrigeration capacity by using nitrogen as the working fluid. In this work, the parameters are focused on the divergence angle of hot tube, length of divergent hot tube and number of nozzle intakes. Experimental results present that there is an optimum angle for obtaining the highest refrigeration performance, and 4° is the optimal candidate under our experimental conditions. Divergent tube length which exceeds a critical length has slight effect on the refrigeration capacity. The critical length to diameter ratio is L/D = 12 in our experiment. Increasing number of nozzle intakes increases the sensitivity of temperature reduction and can obtain the highest possible temperature reduction. Moreover, similarity relations for the prediction of the cold exit stream are presented and confirmed by the experimental data.  相似文献   

4.
In the present study, the cooling performance of the Ranque-Hilsch Vortex tube (RHVT) was experimentally investigated by infrared thermography (IRT) method. For this purpose, experiments were conducted on the cutting tool nose point of the lathe at different diameters, cutting speeds and cutting depths for cases in which cooling was not performed and RHTV cooling was performed. The sample material was gray cast iron in the form of round bars with 15 mm and 20 mm diameter respectively and 100 mm length. The inserts were manufactured by Sandvik Inc., with the ISO designation of TNMG 160404 MF (Triangular insert). The inserts were rigidly mounted on three different right hand style tool holders designated by ISO as MTJNR-L2020 K16T. In all instances, the side rake angle and back rake angle are 0° and fixed. The performance of RHVT was determined by using the temperatures obtained from thermal images (TIs). TIs were taken from the FLIR E45 infrared camera at 30 frames per second. When all the experimental results were evaluated together, the maximum performance of RHVT was found to be for a diameter of sample = 15 mm; cutting depth = 3 mm; cutting speed = 800 rpm (P15,3,800).  相似文献   

5.
A three dimensional Computational Fluid Dynamics (CFD) model is used to investigate the phenomena of energy and species separation in a vortex tube (VT) with compressed air at normal atmospheric temperature and cryogenic temperature as the working fluid. In this work the NIST real gas model is used for the first time to accurately compute the thermodynamic and transport properties of air inside the VT. CFD simulations are carried out using the perfect gas law as well. The computed performance curves (hot and cold outlet temperatures versus hot outlet mass fraction) at normal atmospheric temperature obtained with both the real gas model and the perfect gas law are compared with the experimental results. The separation of air into its main components, i.e. oxygen and nitrogen is observed, although the separation effect is very small. The magnitudes of both the energy separation and the species separation at cryogenic temperature were found to be smaller than those at normal atmospheric temperature.  相似文献   

6.
This study discusses the application of Taguchi method in assessing maximum temperature gradient for the Ranque–Hilsch counter flow vortex tube performance. The experiments were planned based on Taguchi's L27 orthogonal array with each trial performed under different conditions of inlet pressure, nozzle number and fluid type. Signal-to-noise ratio (S/N) analysis, analysis of variance (ANOVA) and regression analysis were carried out in order to determine the effects of process parameters and optimal factor settings. Finally, confirmation tests verified that Taguchi method achieved optimization of counter flow Ranque–Hilsch vortex tube performance with sufficient accuracy.  相似文献   

7.
涡流管具有结构简单、无运动部件、价格低廉、可靠性高等优点,但管内发生的能量转换却极为复杂。本文以压缩空气为工作介质,对涡流管能量分离特性进行试验研究,获得涡流管制冷、制热效应随热端管长度、冷端流率之间的关系。研究结果表明,热端管长度越长,六流道喷嘴涡流管的制冷、制热效应越好,获得最大制冷效应时的冷端流率越大。  相似文献   

8.
A numerical study has been conducted to investigate the effects of variable fluid properties on the prediction of a basic tube vortex design. Beforehand, a literature review is presented to highlight some of the recent advances in the enhancements of the device design and its efficiency. The three-dimensional computations with constant and variable properties revealed that the constant thermophysical assumption might not have a dramatic effect if the aim is to predict global values only, but extra caution should be taken for an in-depth flow assessment. The exergy analysis conducted suggests that the highest exergy efficiency, for the current device design, ranges from 38% to 46% depending on the inlet pressure value. Based on the current numerical analysis; rather large exergy losses are due to irreversibility occurring at either; the lowest or the highest cold mass fraction boundary conditions.  相似文献   

9.
10.
A. Razani  T. Roberts  B. Flake 《低温学》2007,47(3):166-173
A thermodynamic model based on exergy flow through pulse tube refrigerators (PTRs) is developed. An exergetic efficiency parameter representing the losses in the pulse tube itself is proposed. The effects of control parameters representing a general phase shifter and their effect on the system performance are discussed. Analytical solutions representing important parameters in the design of PTRs such as the load curve, cooling power and efficiency in terms of basic system input parameters are developed. It is shown that the analytical model is powerful and convenient for optimization of PTRs and in quantifying its operational bound and important losses. Results indicating a compromise between cooling power and efficiency in PTRs under certain conditions are presented and discussed.  相似文献   

11.
This paper focused on the determining of gas types in counter flow type vortex tubes. In the present study, four different gas types including air, oxygen, nitrogen, and argon in the vortex tube with different inlet pressures and nozzle numbers have been used. The main aims of this paper are to investigate the correlations between gas types and input parameters comprising nozzle numbers, inlet pressures, inlet mass flow rate, temperature of cold outlet, temperature of hot outlet, and cold mass fraction and to select the most important attributes using correlation based attribute reduction and pairwise fisher score attribute reduction (PFSAR). After attribute reduction methods applied to dataset, k-nearest neighbor and C4.5 decision tree classifiers have been used to determine the gas type in the RHVT. The results have demonstrated that the PFSAR is a robust and efficient method in the reduction of attributes belonging to vortex tube.  相似文献   

12.
Modification and experimental research on vortex tube   总被引:2,自引:1,他引:1  
Vortex tube (VT) is a simple energy separating device which is compact and simple to produce and to operate. Although intensive research has been carried out in many countries over the years, the efficiency is still low. In order to improve the energy separate efficiency of vortex tubes, three innovative technologies were applied to vortex tubes. A new nozzle with equal gradient of Mach number and a new intake flow passage of nozzles with equal flow velocity were designed and developed to reduce the flow loss. A new kind of diffuser invented by us was installed for reducing friction loss of air flow energy at the end of the hot end tube of vortex tube, which can greatly improve the performance of vortex tube. The experiment results indicated that these modifications could remarkably improve the performance of vortex tube. The developed vortex tube was not only superior to the conventional vortex tube but also superior to that made by two companies in world under big cold gas mass flow ratio.  相似文献   

13.
The presented model applies to absorption in a falling film of constant thickness of a binary mixture with only one component in the vapour phase. The mathematical formulation with partial differential equations is based on very general assumptions. The model is validated for a horizontal tube absorber. The absorber is simplified to a series of vertical falling films with mixing conditions in between. The dimensionless absorber operating conditions are: Gz = 0.1–10, Le = 0.002 or 0.004, Λ = 0.01 or 0.02, Bi ≈ 5, θc ≈ −0.2, Nc = 0.1. The absorber consists of 10 cooled tubes, measurements were obtained at tube spacings: 0, 3, 15 and 24 mm and with sheet, droplet and jet flow in between the tubes. The correlation between predicted and measured absorption outcomes is very strong. On average the predicted outcomes equal the measured ones within the scatter, if the diffusivity is taken 0.3 times the established correlation and varies with x and y.  相似文献   

14.
Recovering the expansion power in pulse tube cryocooler is of great utility in improving cooling efficiency. Using a second-stage cooler after a primary cooler to produce extra cooling power is an effective way especially when the cooling temperature is not very low. In the configuration, the two coolers are connected by a displacer which is used as a phase shifter. In this paper, experimental investigations were conducted to study this system. Firstly, the performance of the overall system and separated cooler was respectively presented. To better understand the displacer, phase relation, mechanical resistance and displacement were then clarified. In addition, the power consumption distribution of the cascade cryocooler was discussed. Finally, both numerical and experimental comparisons were made on the displacer-type and tube-type cryocooler. The experimental results show that the displacer-type cryocooler has superior performance due to the better phase-modulation capability and less power loss. With the input electric power of 1.9 kW and cooling temperature of 130 K, the overall system achieved a cooling power of 371 W and a relative Carnot efficiency of 24.5%.  相似文献   

15.
In this study, the performance of the counter flow type vortex tube with the input parameters including the nozzle number (N), the densities of inlet gases (air, oxygen, nitrogen, and argon) and the inlet pressure (Pinlet) has been modeled with the proposed hybrid method combining a novel data preprocessing called output dependent feature scaling (ODFS) and adaptive network based fuzzy inference system (ANFIS) by using the experimentally obtained data. In the developed system, output parameter temperature gradient between the cold and hot outlets has been determined using input parameters comprising (Pinlet), (N), and the density of gases. In order to evaluate the performance of hybrid method, the mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), determination coefficient (R2), and Index of Agreement (IA) values have been used. The obtained results are 9.0670e-004 (MAE), 5.8563e-006 (MSE), 0.0024 (RMSE), 1.00 (R2), and 1.00 (IA) using the hybrid method.  相似文献   

16.
A one-dimensional finite volume discretization method is proposed and is implemented as a computer program for the modeling of a family of stirling type Pulse Tube Cryocoolers (PTC). The set of unsteady, one-dimensional, viscous compressible flow equations are written in a general form such that all, porous and non-porous, sections of the PTC can be modeled with these governing equations. In present work, temperature dependency of thermo-physical properties are taken into account as well as the heat transfer between the working fluid and the solid parts, and heat conductions of the gas and solid. The simulation tool can be used to model both the inertance tube type and the orifice type cryocoolers equipped with regenerators made up of different matrix constructions. The PTC might have an arbitrary orientation with respect to the gravitational field. By using the computer program, an orifice type and an inertance tube type pulse tube cryocooler are simulated. Diameter of the orifice and length of the inertance tube are optimized in order to maximize the coefficient of performance. Furthermore, the cooling power of the two types is obtained as a function of the cooling temperature. The behavior of thermodynamic parameters of the inertance tube PTC is investigated. Mean cyclic values of the parameters are presented.  相似文献   

17.
采用实验方法,对比分析采用7mm的内螺纹管和光管冷凝器对冷冻系统整机性能的影响。测试结果表明,采用内螺纹管的冷凝器,冷凝温度降低1K,压损增大30%,功率减小1.5%,换热量增大2.5%,能效比增加3.3%。  相似文献   

18.
Comparison of CFD analysis to empirical data in a commercial vortex tube   总被引:3,自引:0,他引:3  
This paper presents a comparison between the performance predicted by a computational fluid dynamic (CFD) model and experimental measurements taken using a commercially available vortex tube. Specifically, the measured exit temperatures into and out of the vortex tube are compared with the CFD model. The data and the model are both verified using global mass and energy balances. The CFD model is a two-dimensional (2D) steady axisymmetric model (with swirl) that utilizes both the standard and renormalization group (RNG) k-epsilon turbulence models. While CFD has been used previously to understand the fluid behavior internal to the vortex tube, it has not been applied as a predictive model of the vortex tube in order to develop a design tool that can be used with confidence over a range of operating conditions and geometries. The objective of this paper is the demonstration of the successful use of CFD in this regard, thereby providing a powerful tool that can be used to optimize vortex tube design as well as assess its utility in the context of new applications.  相似文献   

19.
A. Razani  C. Dodson 《低温学》2010,50(4):231-238
A thermodynamic model based on exergy flow through a Stirling Refrigerator is developed. Important irreversibilities of the refrigerator due to external heat transfer with the reservoirs, heat leak, flow and heat transfer in regenerator are included in the model. Expansion and compression efficiencies are introduced in the model to account for the losses in these processes. The effect of a control phase shift between the mass flow rate and pressure across regenerator on the performance of the refrigerator is presented. Analytical solutions representing important quantities in the design of Stirling refrigerators such as the load curve, cooling power and efficiency in terms of basic system input parameters are developed. Thermodynamic bounds for the performance of Stirling refrigerators are obtained. Results indicating a compromise between cooling power and efficiency that are dependent on the constraint of the system are presented and discussed.  相似文献   

20.
Metal powders are often made by gas atomization of liquid metal. During the process, liquid metal which flows from a melt delivery tube (MDT) is atomized by high speed gas discharging from a gas nozzle. In this work, the effect of the melt delivery tube position on atomization outcomes such as the yield, mass median diameter, and spread of the particle size distribution, is studied experimentally. A melt atomization setup (pilot-scale) is used to produce tin powder by gas-atomization. Three MDT positions, namely, intruded, extruded and flush with respect to the gas nozzle, are chosen for this study. Three pressure regimes (atmospheric, aspiration and pressurization) are established by varying the relative distance between the MDT and the gas nozzle exit for the three positions. Experimental investigations revealed that the intruded position produces powder with lower mean particle sizes and lower spread than the extruded configuration. The intruded position also gives a significantly higher yield compared to the extruded and flush positions at low gas flow rates, and hence appears to be the most suited for metal atomization using a free-fall configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号