首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
文章以硝酸锂和醋酸锰为原料,以水和丙烯酸为分散介质,采用溶胶—凝胶法在空气气氛下进行分段烧结,控制烧结温度和时间,成功制备了尖晶石结构Li Mn2O4粉体材料。通过XRD、SEM、恒电流充放电测试等手段研究了其形态、结构及电化学性能。结果表明:制备出来的粉体为尖晶石型锰酸锂,结晶度高,无杂质相。其中700℃烧结的样品晶粒大小约在58.9 nm,颗粒大小约为200 nm左右。在1 C的电流密度下,首次放电比容量为112 m Ah/g,经过30次循环放电比容量为104.3 m Ah/g,容量保持率在93.2%,充放电库仑效率接近100%。样品表现出良好的电化学性能。  相似文献   

2.
以钛酸四丁酯(TBT)、氢氧化锂(LiOH·H_2O)为原料,采用水热法合成锂离子电池负极材料纳米片状钛酸锂(Li4Ti5O12)。通过X-射线衍射、扫描电子显微镜、恒流充放电及电化学阻抗等技术对合成材料的结构、表面形貌及电化学性能进行表征。结果表明,制备的材料为片状结构,具有较大的比表面积,分散性较好。在电压为1.0~2.5 V,以0.5 C的倍率进行充放电,首次放电比容量高达180.2 m Ah/g,循环50次后,容量仍保持162.2 m Ah/g。在10 C高倍率下,放电比容量仍高达130.7 m Ah/g,材料表现出优异的循环性能和倍率性能。  相似文献   

3.
以Ni(NO3)2·6H2O和NaOH为原料采用化学沉淀法制备了Ni(OH)2电极材料。采用X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)表征了样品的微观结构,结果表明该样品是具有片状纳米次级结构的β-Ni(OH)2。采用循环伏安(CV)和电化学充放电测试研究了该β-Ni(OH)2样品的储锂性能,结果发现该样品作为锂离子电池负极材料具有非常高的储锂活性,在50 m A·g-1电流密度下其第3次循环放电比容量高于1550m A·h·g-1;样品电极中的碳含量对其循环性能和倍率性都有显著影响,通过交流阻抗(EIS)测试分析了样品电极中碳含量的作用机理。  相似文献   

4.
采用溶剂热法合成Ni(OH)_2/C复合电极材料,研究C对复合电极材料电化学性能的影响。测试结果表明,产物为片状不规则外观,且Ni(OH)_2未发生晶型结构改变,Ni(OH)_2/C复合电极材料表现出较好的电化学性能,首次放电比容量达到185.0 F·g~(-1)。当测试电流密度为0.5A·g~(-1)时,充放电循环200次后的比容量保持率为92.5%,说明复合材料具有较好的循环稳定性。  相似文献   

5.
本文利用聚丙烯腈(PAN)与聚偏氟乙烯(PVDF)的共混物,通过静电纺丝技术制备了PAN/PVDF的纳米纤维薄膜,然后通过真空抽滤的方法分别向纤维薄膜中抽滤纳米二氧化硅(SiO_2)和导电炭黑(Super P),最后将两张填充了不同纳米粒子的薄膜压制成一张锂硫电池隔膜。该隔膜在0. 2C电流测试下首圈放电比容量达到1268mAh/g,循环50圈后的放电比容量629 m Ah/g,并且在1C充放电循环100圈后其放电比容量还有680m Ah/g。与商业相比,该隔膜具有更好的电化学性能。  相似文献   

6.
以石墨为原料,先由Hummer法制得氧化石墨烯,然后采用水热法合成石墨烯气凝胶,并考察了其作为锂离子电池负极材料的电化学性能。研究结果表明:在100 m A/g的电流密度下,石墨烯气凝胶的首次放电容量高达1 865 m Ah/g,经过20次反复充放电后,放电容量能够稳定在445 m Ah/g;因独特的三维导电网络结构,石墨烯气凝胶表现出较好的大电流倍率性能,其在800 m A/g的电流密度下,放电容量仍达237 m Ah/g。  相似文献   

7.
采用控制沉淀法制备Ni(OH)2/C复合材料,用XRD和SEM表征材料的结构和形貌。首次将材料用于锂离子电池,通过充放电测试、循环伏安法和交流阻抗实验研究其嵌/脱锂行为和电化学性能。结果表明,Ni(OH)2/C复合材料具有嵌/脱锂性能,首次可逆比容量达到992mAh/g,20次循环后的可逆比容量为211mAh/g,循环效率为95.6%,高于Ni(OH)2材料(128mAh/g和94.4%),循环性能的改善可归因于掺杂石墨后,使电极电导率明显提高,同时减缓体积效应。  相似文献   

8.
报道了用水热法合成具有微纳分级结构的Zn Co_2O_4微米花,这种微纳分级结构在纳米尺度上是平均厚度为90nm的纳米片,并且纳米片上分布着4~12nm的介孔,借此可以极大地提高电极材料与电解液的接触面积;卷曲的纳米片进一步组装成尺度为2~4μm的具有玫瑰花状的微米花,通过微米尺度的3D结构可以防止电极材料在充放电过程中发生堆叠。研究表明这种微纳分级结构的电极材料适用于制备高比能的锂离子电池,并表现出良好的充放电能力、循环稳定性和倍率性能。如在200m A/g电流密度下经140次循环后放电容量高达935m Ah/g;在1000m A/g电流密度下经250次循环后放电容量仍达到567.4m Ah/g。  相似文献   

9.
采用溶胶-凝胶法合成富锂锰基(Li_(1.2)Ni_(0.2)Mn_(0.6)O_2)正极材料,考察反应pH对材料结构、形貌及电化学性能的影响。X射线衍射(XRD)分析结果表明,制备的材料(Li_(1.2)Ni_(0.2)Mn_(0.6)O_2)结晶良好,均为理想层状结构的富锂锰基材料。扫描电子显微镜(SEM)分析结果显示,pH 7.0时制得的材料颗粒细小,分散均匀。充放电性能测试结果显示,pH 7的样品具有良好的电化学性能,在2.0~4.8 V以0.05 C充放电时,首次容量达到263 m Ah/g。同时具有良好的倍率性能,1.0 C放电容量达到200 m Ah/g。  相似文献   

10.
利用松花粉为生物模板制备了多孔ZnFe_2O_4/C复合材料。研究了不同制备工艺参数对其电化学性能的影响,最佳条件所得ZnFe_2O_4/C在0.2 A g-1下首次充放电容量为884.2 m Ah·g-1/1244.6 m Ah·g-1,库仑效率为71%,循环到120圈时可逆放电比容量为985.8 m Ah·g-1。考察了不同粘结剂对ZnFe_2O_4/C电化学性能的影响,结果表明CMC作为粘结剂时,其电化学性能要优于以PVDF和ALG做粘结剂的样品,在10 A·g-1电流密度下材料的平均放电比容量仍能达到393.6 m Ah·g-1。  相似文献   

11.
分别利用水解法及醇解法制备不同添加比例的Ti O_2-Si O_2纳米复合材料,并对制得的复合材料进行金属掺杂,得到一种高效纳米复合材料的制备方法。通过X射线衍射(XRD)、比表面积(BET)及孔径分布分析对制得的纳米Ti O_2-Si O_2复合材料的微观结构进行了表征。结果表明,所制备的复合材料为锐钛矿二氧化钛结构,并可能生成二氧化硅嵌在二氧化钛的晶格中,材料比表面积高达387.9634m~2/g,孔隙分布适度。该纳米Ti O_2-Si O_2复合材料具有良好的比容量,水解法表现出更优的充放电性能,其中水解法制备的硅钛物质的量比为1∶1的样品首次放电比容量达987.4m Ah/g,100次循环后容量保持在76.1m Ah/g。  相似文献   

12.
柳孟良  陶熏 《广东化工》2016,(16):108-109
采用二步固相法制备了Li_4Ti_(4.95)Nb_(0.05)O_(12)负极材料,扫描电镜、激光粒度分布仪、充放电测试和循环伏安等测试结果表明:合成的样品粒径分布均匀,Nb掺杂改性的Li_4Ti_5O_(12)具有优良的电化学性能,0.1 C、0.5 C、1 C和10 C首次放电比容量分别为174.1 m Ah/g、159.7 m Ah/g、147 m Ah/g和123.3 m Ah/g。10 C下,循环20次后容量保持为118.1 m Ah/g。  相似文献   

13.
以Ni(NO3)2·6H2O和NaOH为原料采用化学沉淀法制备了Ni(OH)2电极材料。采用X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)表征了样品的微观结构,结果表明该样品是具有片状纳米次级结构的β-Ni(OH)2。采用循环伏安(CV)和电化学充放电测试研究了该β-Ni(OH)2样品的储锂性能,结果发现该样品作为锂离子电池负极材料具有非常高的储锂活性,在50 mA·g-1电流密度下其第3次循环放电比容量高于1550 mA·h·g-1;样品电极中的碳含量对其循环性能和倍率性都有显著影响,通过交流阻抗(EIS)测试分析了样品电极中碳含量的作用机理。  相似文献   

14.
以稻壳为硅源,通过镁热还原法制备得到硅粉。以制备的硅粉为基础,通过分散、煅烧的方法制备了锂离子电池硅/石墨、硅/无定形碳、硅/石墨/无定形碳、硅/石墨/碳纳米管/无定形碳负极材料,并评价其电化学性能。实验制备的硅/石墨/碳纳米管/无定形碳负极材料具有较优异的电化学性能。该材料硅质量分数为20%时[m(石墨)∶m(无定形碳)=1∶1,碳纳米管质量分数为1%],R_(ct)值为109Ω,在200 m A/g电流密度下首次放电比容量为785.5 m Ah/g,充放电20次后比容量为645.4 m Ah/g,其容量保持率为83.65%。  相似文献   

15.
以可溶性淀粉为原料,通过水热法和高温碳化得到活性炭微球(ACMS),然后与Ni(Ac)_2·4H_2O、LiOH溶液反应,得到Ni(OH)_2/ACMS复合电极材料。测试结果表明,最终产物具有球状规则外观,Ni(OH)_2均匀分布在其表面,XRD测试表明Ni(OH)_2晶型结构未发生改变。Ni(OH)_2/ACMS复合电极材料具有良好的电化学性能,首次放电比容量为223.0 F·g~(-1),在0.5A·g~(-1)测试电流密度条件下,充放电循环200次后的比容量保持率为90.0%,说明复合材料具有较优异的循环稳定性。  相似文献   

16.
通过水热法结合碳包覆的途径,制备出碳包覆的二氧化钛样品,并对样品进行氮掺杂后作为钠离子电池负极材料。通过XRD、SEM、XPS、充放电测试对其进行结构、形貌分析和电化学性能研究。结果发现,氮离子掺杂对二氧化钛的晶型没有影响,且氮离子成功地掺入晶体内部。氮离子掺杂后,样品N-TiO_2的倍率性能有了明显的提高。在5 A/g电流密度下,样品二氧化钛和N-TiO_2的放电比容量分别为120.5、141.9 m A·h/g。在1 A/g的电流密度下,样品二氧化钛和N-TiO_2的放电比容量分别为115、170.8 m A·h/g,循环1 000圈后,放电比容量依然高达111.2、168 m A·h/g,样品N-TiO_2和二氧化钛均具有优异的循环稳定性,但氮离子掺杂后,比容量有了显著的提高。实验表明,氮离子掺杂后,材料中产生的Ti3+和氧空位有效地提高了材料的导电性,使得其电化学性能有了明显的改善。  相似文献   

17.
以V_2O_5、LiOH、NH_4H_2PO_4、Al(OH)_3和柠檬酸为原料采用溶胶-凝胶法合成V位掺杂Al3+的Li_3V_(2-x)Al_x(PO_4)_3/C复合材料,仔细研究Al3+掺杂对磷酸钒锂材料电化学性能的影响,确定最佳的Al掺杂量。同时借助各种分析手段(如XRD、SEM、TG-DTA)对掺杂后Li_3V_(2-x)Al_x(PO_4)3/C材料结构变化进行探究,深入理解V位掺杂对电化学性能产生作用的内在机理。Li_3V_2-xAlx(PO_4)_3/C(x=0,0.02,0.05,0.1,0.15,0.2)首次放电比容量分别为103.7 m Ah/g,105.7 m Ah/g,108.4 m Ah/g,141.1 m Ah/g,130.1 Ah/g,124.8 m Ah/g。在一定范围内,随着Al3+量的提高,相应的Li3V2-xAlx(PO4)3/C的首次放电比容量也不断的增加。  相似文献   

18.
采用溶胶-凝胶法合成钠离子电池正极材料Na(Mn_(0.4)Fe_(0.2)Ni_(0.4))O_2,并对其进行Mg元素掺杂合成Na(Mn_(0.4)Fe_(0.2)Ni_(0.35)Mg_(0.05))O_2材料,分别对2种材料的表面形貌、结构以及电化学性能进行了研究。结果表明:掺杂合成的样品Na(Mn_(0.4)Fe_(0.2)Ni_(0.35)Mg_(0.05))O_2同样具有O3型层状结构,虽然首次放电比容量降低至125.6 m Ah/g,但是其循环性能和倍率性能却明显优于原始样品。在循环50次之后,其放电比容量仍可达114.7 m Ah/g,对应的容量保持率为91.3%。在1 C倍率下,仍能释放出90.1 m Ah/g的可逆容量。此外,交流阻抗结果表明,该材料具有更小的电荷转移阻抗。  相似文献   

19.
以大鳞片石墨制备的膨胀石墨(EG)为原料,采用改进的Hummers法制备氧化石墨,采用Na BH4化学还原制备石墨烯。采用扫描电镜和X射线衍射仪对化学还原后的石墨烯进行形貌和结构表征,应用电池测试系统对样品进行循环伏安(CV)、恒流充放电等电化学性能测试。结果表明:石墨烯电极在电流密度100m A·g-1时的首次放电比容量达1900m Ah·g-1;经100个循环周期后石墨烯电极比容量为450m Ah·g-1;在不同电流密度下循环50次,再回到100m A·g-1时,仍保持首次循环92%的比容量。  相似文献   

20.
以间苯二酚和甲醛为前驱体,原位合成的Mg(OH)2为模板剂,KOH作为催化剂、沉淀剂、活化剂,一步法合成具有小/中/大孔的分级多孔炭。使用扫描电镜、透射电镜、氮气吸附、X射线衍射对样品的结构进行表征。通过恒流充放电、循环伏安、电化学阻抗谱,测试样品在1mol/L的(C2H5)4NBF4/碳酸丙烯酯(Propylene carbonatePC)电解液中的电化学性能。结果表明,随着KOH对间苯二酚用量的增加,材料的比表面积和孔容先增大后减小,其最大值分别为1300m2/g和0.89cm3/g。该材料具有良好的容量性能和功率性能,在电流密度0.1A/g时,最高质量比电容可以达到116F/g;当电流密度增大到5A/g时,电容保持率为78%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号