首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been shown that sexual dimorphic morphology of certain hypothalamic and limbic areas underlie gender-specific sexual behavior and neuroendocrine mechanisms. The key role played by locally formed estrogen in these developmental events has been revealed during a critical perinatal period. In this study, we aimed to document the presence of estrogen-synthetase (aromatase)-immunoreactive elements in the involved limbic system and hypothalamus of the developing rat brain. On postnatal day 5, animals of both sexes were perfusion-fixed, and sections from the forebrain and hypothalamus were immunolabelled for aromatase using an antiserum that was generated against a 20 amino acid sequence of placental aromatase. Aromatase-immunoreactivity was present in neuronal perikarya and axonal processes in the following limbic structures: the central and medial nuclei of the amygdala, stria terminalis, bed nucleus of the stria terminalis (BNST), lateral septum, medial septum, diagonal band of Broca, lateral habenula and all areas of the limbic (cingulate) cortex. In the hypothalamus, the most robust labelling was observed in the medial preoptic area, periventricular regions, ventromedial and arcuate nuclei. The most striking feature of the immunostaining with this antiserum was its intracellular distribution. In contrast to the heavy perikaryal labelling that can be observed with most of the currently available aromatase antisera, in the present experiments, immunoperoxidase was predominantly localized to axons and axon terminals. All the regions with fiber staining corresponded to the projection fields of neuron populations that have previously been found to express perikaryal aromatase. Our results confirm the presence of aromatase-immunoreactivity in developing limbic and hypothalamic areas. The massive expression of aromatase in axonal processes raises the possibility that estrogen formed locally by aromatase may not only regulate the growth, pathfinding and target recognition of its host neuronal processes, but may also exert paracrine actions on structures in close proximity, including the target cells.  相似文献   

2.
Sexual behavior is a natural reward that activates striatal dopaminergic (DA) circuits, and dopamine exerts a facilitative influence on copulation. Electrical stimulation of the striatum has been shown to be rewarding, but its effect on male sexual behavior display has not been established. The objective of the present work was to assess the effects of low- and high-frequency electrical stimulation of the dorsal and ventral striatum on male rat sexual behavior expression. To this aim, copulatory activity of sexually experienced male rats was recorded during electrical stimulation of the nucleus accumbens (NAcc) or caudate-putamen (CP), at each stimulation frequency, before and after sexual exhaustion. Results showed that electrical stimulation of the NAcc at both frequencies increased the number of ejaculations that male rats were able to show in a 30-min period. By contrast, stimulation delivered to the CP inhibited sexual behavior by slowing its display. Each effect was more pronounced at low than at high stimulation frequencies. In the same rats, once sexually exhausted, electrical stimulation of these brain areas did not reverse the sexual behavior inhibition that characterizes the sexual exhaustion state. It is concluded that dorsal and ventral striatal DA brain regions exert opposite influences on copulatory behavior expression of sexually experienced male rats. Also, that the facilitative effect of NAcc electrical stimulation on sexual activity, with the stimulation parameters used, cannot surmount the sexual behavior inhibition resulting from copulation to satiation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
4.
The effects of intracranial implants of estradiol in the ventromedial hypothalamus (VMH), the anterior hypothalamus (AH), or the medial amygdala (AMG) on aggression, sexual behavior, and serum estradiol were examined in female Syrian hamsters. Estradiol implants in the VMH, followed by systemic progesterone, stimulated sexual behavior and inhibited aggression. Estradiol implants in other intracranial sites activated sexual behavior but did not reliably inhibit aggression. Intracranially implanted and systemically treated animals had equivalent peripheral estradiol concentrations at sacrifice. Results suggest that (1) the VMH is an important neural site for estradiol actions on sexual and aggressive behavior, (2) the caudal AH and AMG may also be sites of estradiol action on sexual behavior, and (3) intracranial implants may only be effective given systemic estradiol exposure or the concurrent stimulation of multiple brain areas. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
The inducible nature of the immediate-early genes (IEGs) c-fos and zif268 allows their products to be used as activity markers in the brain. The utility of such markers in general is restricted because they can resolve only neurons activated by a single stimulus. To overcome this limitation, we have developed a double-label technique that exploits the dissimilar time course of zif268 mRNA and protein induction, allowing them to be separately induced by two different stimuli and independently stained to provide a visual display of neurons that are responsive to each stimulus. Two powerful features of this new imaging technique-the possibility of staining separate populations of activated neurons and the ability to visualize them at the cellular level-should extend IEG applications in biological activity mapping.  相似文献   

6.
In the present study a comparison was made between the distribution of Fos immunoreactivity in the brain of female and male rats following successive elements of sexual behavior. The distribution of Fos immunoreactivity following either mounting, eight intromissions or one or two ejaculations was compared with that in control animals. In both females, Fos immunoreactivity was induced in the medial preoptic nucleus, posteromedial part of the bed nucleus of the stria terminalis, posterodorsal part of the medial amygdala, and the parvicellular part of the subparafascicular thalamic nucleus. In addition, Fos immunoreactivity in females was induced in the ventrolateral part and the most caudoventral part of the ventromedial nucleus of the hypothalamus and in the premammillary nucleus. Differences between females and males were detected in the phases of sexual activity that resulted in Fos immunoreactivity in these brain areas, allowing more insight in the nature of the sensory and hormonal stimuli leading to the induction of Fos immunoreactivity. The posteromedial bed nucleus of the stria terminalis appears to be involved in chemosensory investigation, while specific distinct subregions are only activated following ejaculation. In addition, the parvicellular subparafascicular nucleus and the lateral part of the posterodorsal medial amygdala appear to be involved in the integration of viscero-sensory input. The neural circuitries underlying sexual behavior in males and females appear to be similar in terms of integration of sensory information. In males the medial preoptic nucleus may be regarded as the brain area where the integration of sensory and hormonal stimulation leads to the onset of male sexual behavior, while in females the ventrolateral part of the ventromedial hypothalamic nucleus appears to have this function. In addition, Fos immunoreactivity was distributed in distinct clusters in subregions with various brain areas in males and females. This was observed especially in the posteromedial bed nucleus of the stria terminalis and posterodorsal medial amygdala, but also in the parvicellular subparafascicular nucleus, ventromedial hypothalamic nucleus and ventral premammillary nucleus. It appears that relatively small subunits within these nuclei seem to be concerned with the integration of sensory and hormonal information and may play a critical role in sexual behavior.  相似文献   

7.
The present study was conducted to demonstrate immunohistochemically, the sites of c-fos protein expression in the brains of mice subjected to acute and chronic social defeat stress. To induce social stress, mice were placed in situations of species-specific intermale aggression either only once or five times at 24 h intervals. Two hours after the single or fifth defeat stress, many c-fos immunoreactive neurons were observed in a variety of brain regions including the limbic system and sensory relay nuclei. The c-fos immunoreactive neurons in the brains of acute defeat mice decreased in number with time and the c-fos staining pattern of acute defeat mice became indistinguishable from that of normal control mice by 24 h after the single defeat stress. In contrast, chronic defeat stress induced persistent c-fos expression in the forebrain and brainstem even 24 h after the fifth defeat stress. In the forebrain of chronic defeat mice, the olfactory bulb, cingulate cortex, hippocampus, entire hypothalamus, septal nuclei and the amygdaloid complex, except for the central nucleus, were labeled intensely with c-fos antiserum. In the lower brainstem, nerve cells with c-fos immunoreactivity were seen mainly in ascending and descending sensory relay nuclei relevant to auditory and vestibular transmission, epicritic sensation (gracile and external cuneate nuclei), pain inhibition (central gray and raphe nuclei), and viscerosensory transmission (solitary tract nucleus). The differences in c-fos expression among the normal control, acute and chronic defeat mice were evaluated by an enumeration of the immunopositive neurons within each brain nucleus examined, and they were confirmed subsequently by statistical analysis. There was little c-fos expression in the nucleus putamen, lateral, ventral and posterior thalamic nuclei, pretectal nuclei, medial geniculate nucleus, red nucleus, substantia nigra, cerebellum, spinal cord, or cranial nerve nuclei. These findings suggest that chronic but not acute defeat stress causes persistent c-fos expression in more widespread brain regions than do any other stresses so far investigated. The present study may shed light on the central mechanisms by which behavioral abnormalities and/or chronic sociopsychological stress leads to the occurrence of abnormal behavior and/or psychosomatic disorders in experimental animals and humans.  相似文献   

8.
Chemosensory cues detected by the vomeronasal (VN) organ modulate a variety of social interactions in many species. In particular, activation of the VN system by pheromones regulates sexual behavior in the rodent. Although the exact nature of stimulus access to the organ is not clearly defined, the neuroanatomical pathway connecting the VN organ to hypothalamic centers controlling reproductive function is well established and relatively straightforward. Electrophysiological techniques have provided insight into the signal transduction process throughout the VN system. Combining behavioral studies with immunocytochemical detection of immediate early genes and neuropeptides reveals that gonadotropin hormone releasing hormone (GnRH)-containing neurons are specifically activated by stimulation of the VN organ. Furthermore, some of the activated GnRH neurons project to the ventromedial hypothalamus where they are hypothesized to induce sexual responsiveness. Early anecdotal evidence of an influence of the VN organ on human reproductive events has been substantiated by more recent anatomical, behavioral, and electrophysiological studies. Thus, further deciphering of the signal transduction process within the VN system of the rodent may yield unique insights into behaviors associated with human reproduction.  相似文献   

9.
Nicotine is known to have multiple effects on neuroendocrine, autonomic, and behavioral responses. Its neuroendocrine effect on the stress-responsive hormone, ACTH, depends on central pathways that act on corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN). Other CRH neurons throughout the brain also are involved in coordinating aspects of the stress response, but very little is known about the effect of nicotine on CRH neurons in extrahypothalamic regions that are involved in the autonomic and behavioral responses to stress. The current study sought to determine the extent of nicotinic activation of extrahypothalamic CRH neurons, since these neurons may be involved in mediating the central effects of nicotine. Freely moving rats were pretreated with a low dose of colchicine, infused with nicotine (0.045 mg/kg/30 s or 0.135 mg/kg/90 s, i.v.), and cardiac perfused 1 h later. Double-label immunocytochemistry identified the activated (positive for cFos protein) CRH neurons in limbic structures (bed nucleus of the stria terminalis [BNST] and central nucleus of the amygdala [CNA]), the dorsal raphe (DR), and Barrington's nucleus (BN); comparisons were made to the PVN. In all of these areas, nicotine activated CRH neurons in a dose-dependent manner, showing differential sensitivity and efficacy with respect to region. CNA CRH neurons were most responsive and were maximally stimulated by the low dose of nicotine (62% of CRH neurons were cFos+, compared to 10-27% of the CRH population in other regions, including the PVN). Although the BNST also was activated by the low dose, only the non-CRH+ neurons were involved; in contrast, 41% of the BNST CRH neurons responded to the higher dose. Nicotinic activation of DR neurons was dose-dependent, with 22% of the CRH neurons activated by the high dose. Few BN neurons were activated by the low dose of nicotine, but 26% of the CRH population responded to the higher dose. These results indicate that the effect(s) of nicotine on the brain may be mediated, in part, by the selective activation of specific extrahypothalamic regions containing CRH neurons that also are involved in autonomic and behavioral responses to stress. The large fraction of CRH neurons responding to the low dose of nicotine in the CNA suggests that this limbic region may be particularly important in mediating these CNS effects of nicotine.  相似文献   

10.
Neuroendocrine response to stress stimuli is aimed to maintain body homeostasis. The activation of the neuroendocrine system is accomplished mainly by two ways: by feedback regulation based on the recognition of altered metabolic homeostasis by appropriate receptors sending the signal into the CNS, and by forward regulation involving a direct stimulation of the neuroendocrine system by a central command coming from an activated brain regulatory center. With regard to mechanisms of neuroendocrine activation, the signal specificity and site of its origin are of particular importance. The significance of the signal in neuroendocrine responses has been evaluated in three different stress conditions: hypoglycemia, surgical trauma and dynamic physical exercise. The stimulus inducing neuroendocrine response during hypoglycemia is the glucopenia. The signal for the activation of the neuroendocrine response is generated in glucosensitive cells which are not located in a single brain structure (hypothetical glucostat). The signal for growth hormone, vasopressin and oxytocin release is produced in brain structures protected by the blood-brain barrier, that for ACTH release in regions both protected and unprotected by the barrier, while the signal for prolactin release is generated in tissues lacking the blood-brain barrier. The neuroendocrine response during surgical trauma is activated by a signal formed in the damaged tissue reaching the CNS by neural pathways. Moreover, cytokins may participate on endocrine stimulation in those surgical interventions in which a large amount of bacterial endotoxins is released. During a complicated surgery, e.g. during a bypass other signals and modifying factors, such as hypothermia, dilution of blood, hypoperfusion of organs, rewarming of the body and hormone degradation in the oxygenator are important. On the On the other hand, during a short-term dynamic exercise, a forward regulation by a central signal from the activated CNS motor center comes into play with the consequent release of catecholamines, growth hormone, etc. In the control of some other hormones (beta-endorphin, partly ACTH) and especially during a long term exercise, neural signals from working muscles (feedback) are also involved. During a static exercise mainly catecholamines triggered by signals from working muscle cells are activated. The understanding of the signal and mechanisms of neuroendocrine activation during stress is indispensable for selective modulation of physiological and pathological responses.  相似文献   

11.
Receptors for insulin are widely distributed in the brain and pituitary. The current hypothesis on receptor function in these regions points to a role of insulin as a mediator in the communication of the peripheral endocrine system with the brain via various steps of the neuroendocrine axis. Recent data demonstrate that receptor-positive neurons in the brain, i.e. in the hypothalamus, and secretory cells in the anterior pituitary gland possess specific proteins that are thought to be involved in key steps of post receptor signal transduction, in particular insulin receptor substrate-1 and phosphatidylinositol 3'-kinase (PI3k). PI3k is a critical enzyme of the intracellular signaling pathway that is activated by a number of receptor tyrosine kinases, including receptors for insulin and IGF-1. This information further completes the framework indicating in vivo activity of insulin receptors in central neuroendocrine cells and their involvement in one branch of several physiological mechanisms that control body metabolism and nutritional behaviour.  相似文献   

12.
The ethanol withdrawal syndrome includes anxiety as a prominent symptom. Because the extent that specific regions of brain are critical to the generation of this emotional state is unknown, Fos-like immunoreactivity (Fos-LI) was used to associate specific regions of the rat brain with the anxiety component of the ethanol withdrawal syndrome exacerbated by an air puff challenge in rats. Chronic ethanol liquid diet was administered intragastrically for 4 days or by having the rats consume the diet for 14 days. During withdrawal from either treatment protocol, Fos-LI was induced most prominently in forebrain areas, although the midbrain and hindbrain were also represented. Included in these Fos-LI positive regions were many cortical regions, septum, accumbens, claustrum, amygdala, paraventricular nucleus of the thalamus and hypothalamus, hippocampus, locus coeruleus, and central gray. Fos-LI expression differed mostly in intensity between the two treatment and withdrawal protocols, with the gastric protocol producing the greatest Fos-LI induction in most brain regions. The threshold for air puff-induced ultrasonic vocalizations was decreased, and the number of vocalizations was increased and the period of vocalization was extended. These behavioral data indicate that aversively motivated responding in rats during ethanol withdrawal can be readily quantified with the ultrasonic vocalizations test without precipitating convulsive activity. Furthermore, a comparison of the effects of the air puff challenge versus withdrawal on Fos-LI indicated that the behavioral state induced in these two situations share functional neuroanatomical features. Some regions--such as the accumbens core, medial septum, subregions of the amygdala, hippocampus, substantia nigra, and cerebellum--exhibited little Fos-LI during withdrawal and also did not exhibit strong increases after the addition of the air puff challenge. However, other regions-such as the cerebral cortex (medial prefrontal, frontal, cingulate and ventrolateral orbital, claustrum, and tenia tecta), hypothalamus, and locus ceoruleus- exhibited Fos-LI at levels higher than that seen after either the ethanol withdrawal or puff challenge alone. These overlapping patterns of Fos-LI in specific regions of the brain, activated by both ethanol withdrawal and an anxiety provoking behavioral challenge, suggest that specific neuroanatomical sites in brain are associated with the symptom of anxiety observed during the "ethanol withdrawal syndrome."  相似文献   

13.
Previous research suggests that corticotropin-releasing hormone can act in the locus coeruleus to increase the firing of locus coeruleus neurons and elicit physiological responses resembling those associated with stress. The present study used immunocytochemical detection of Fos as a measure of neuronal activation to identify brain areas that were activated by bilateral injections of corticotropin-releasing hormone into the locus coeruleus of rats. Injection of corticotropin-releasing hormone into the locus coeruleus increased the expression of Fos in the locus coeruleus as compared with injection of vehicle into the locus coeruleus or injection of corticotropin-releasing hormone into neighbouring pontine sites. The pattern of Fos expression throughout the brain after injections of corticotropin-releasing hormone into the locus coeruleus was generally consistent with the anatomical organization of efferent projections arising from the locus coeruleus; increased Fos expression was observed in many brain areas including the ventral lateral septum, septohypothalamic nucleus, bed nucleus of the stria terminalis, the central amygdaloid nucleus, the dorsomedial nuclei of the hypothalamus, and the thalamic paraventricular and rhomboid nuclei. Foot shock also increased Fos expression in the locus coeruleus and the other brain regions that expressed Fos after corticotropin-releasing hormone injections into the locus coeruleus. A few brain regions, most notably the hypothalamic paraventricular nucleus, expressed Fos in response to foot shock but not corticotropin-releasing hormone. These results indicate that local injection of corticotropin-releasing hormone into the locus coeruleus stimulates the activity of the locus coeruleus neurons. However, the pattern of Fos expression throughout the brain evoked by injection of corticotropin-releasing hormone into the locus coeruleus does not fully replicate the effects of foot shock.  相似文献   

14.
15.
In acute experiments on cats anesthetized with nembutal and chloralose the projections of different parts of orbito-frontal cortex, basal temporal cortex and hippocampus to hypothalamic nuclei were studied by focal potential recording. It was found that the proreal gyrus has local projections into the latero-dorsal parts of the preoptical region, rostral parts of the forebrain medial bundle, lateral and posterior hypothalamus with mammilary bodies. The orbital gyrus is projected mainly into latero-dorsal parts of the forebrain medial bundle, latero-ventral part of the preoptical region, and the region of lateral and latero-dorsal hypothalamic nuclei. Projections from the orbital gyrus are of a relatively diffuse character. The basal temporal cortex has diffuse projections into the central part of the preoptical region, latero-ventral part of the forebrain medial bundle and lateral mammilary body. No pronounced foci were observed in the hypothalamic structures during stimulation of the hyppocampus, but diffuse projections were found into ventral parts of the preoptical region and ventral regions of the forebrain medial bundle as well as into lateral hypothalamus and lateral mammilary nucleus.  相似文献   

16.
17.
18.
Glucagon-like peptide-1 (GLP-1) is derived from the peptide precursor pre-pro-glucagon (PPG) by enzymatic cleavage and acts via its receptor, glucagon-like peptide-1 receptor (GLP-1R). By using riboprobes complementary to PPG and GLP-1R, we described the distribution of PPG and GLP-1R messenger RNAs (mRNAs) in the central nervous system of the rat. PPG mRNA-expressing perikarya were restricted to the nucleus of the solitary tact or to the dorsal and ventral medulla and olfactory bulb. GLP-1R mRNA was detected in numerous brain regions, including the mitral cell layer of the olfactory bulb; temporal cortex; caudal hippocampus; lateral septum; amygdala; nucleus accumbens; ventral pallium; nucleus basalis Meynert; bed nucleus of the stria terminalis; preoptic area; paraventricular, supraoptic, arcuate, and dorsomedial nuclei of the hypothalamus; lateral habenula; zona incerta; substantia innominata; posterior thalamic nuclei; ventral tegmental area; dorsal tegmental, posterodorsal tegmental, and interpeduncular nuclei; substantia nigra, central gray; raphe nuclei; parabrachial nuclei; locus ceruleus, nucleus of the solitary tract; area postrema; dorsal nucleus of the vagus; lateral reticular nucleus; and spinal cord. These studies, in addition to describing the sites of GLP-1 and GLP-1R synthesis, suggest that the efferent connections from the nucleus of the solitary tract are more widespread than previously reported. Although the current role of GLP-1 in regulating neuronal physiology is not known, these studies provide detailed information about the sites of GLP-1 synthesis and potential sites of action, an important first step in evaluating the function of GLP-1 in the brain. The widespread distribution of GLP-1R mRNA-containing cells strongly suggests that GLP-1 not only functions as a satiety factor but also acts as a neurotransmitter or neuromodulator in anatomically and functionally distinct areas of the central nervous system.  相似文献   

19.
Expression of c-fos mRNA was studied in the adult rat brain following cochlear ablations by using in situ hybridization. In normal animals, expression was produced by acoustic stimulation and was found to be tonotopically distributed in many auditory nuclei. Following unilateral cochlear ablation, acoustically driven expression was eliminated or decreased in areas normally activated by the ablated ear, e.g., the ipsilateral dorsal and ventral cochlear nuclei, dorsal periolivary nuclei, and lateral nucleus of the trapezoid body and the contralateral medial and ventral nuclei of the trapezoid body, lateral lemniscal nuclei, and inferior colliculus. These deficits did not recover, even after long survivals up to 6 months. Results also indicated that neurons in the dorsal cochlear nucleus could be activated by contralateral stimulation in the absence of ipsilateral cochlear input and that the influence of the contralateral ear was tonotopically organized. Results also indicated that c-fos expression rose rapidly and persisted for up to 6 months in neurons in the rostral part of the contralateral medial nucleus of the trapezoid body following a cochlear ablation, even in the absence of acoustic stimulation. This response may reflect a release of constitutive excitatory inputs normally suppressed by missing afferent input or changes in homeostatic gene expression related to sensory deprivation. Instances of transient, surgery-dependent increases in c-fos mRNA expression in the absence of acoustic stimulation were observed in the superficial dorsal cochlear nucleus and the cochlear nerve root on the ablated side.  相似文献   

20.
1. The present work deals with sexual differences in gonadotropin regulation in the rat and the role of sexual organization of the hypothalamus in determining such differences. 2. Sex differences between male and female rats, with regard to their control of gonadotropin secretion, go beyond whether or not gonadotropins are released cyclically. Rats show additional sex differences (a) in the response of gonadotropins to removal and imposition of negative feedback signals and (b) in the ontogeny of gonadotropin regulation from birth to puberty. 3. There is a sensitive developmental period during which sexual differentiation of neural substrates proceeds irreversibly under the influence of gonadal hormones. In the rat this period starts a few days before birth and ends approximately 10 days after birth. Female rats treated during this sensitive period with androgens or estrogens will permanently lose the capacity to release GnRH in response to estrogenic stimulation. 4. Nevertheless although sexual differentiation is dramatically affected by events during the neonatal period, recent data question the "critical" nature of this period, as it has been shown that testosterone can still act on neural substrates well beyond (15 to 30 days of age) the neonatal period to defeminize and masculinize endocrine and behavioral functions. 5. Furthermore, the capacity for the normal display of female sexual behavior and for the cyclic release of gonadotropins is not, as has been assumed, inherent to central nervous tissue but depends on active hormonal estrogenic induction during a sensitive period of development. 6. Besides, during differentiation of male sexual brain function estrogens may be supportive, rather than directive, to the primary action of androgens. 7. Serotonergic, noradrenergic, and opioid systems participate in the sexual dimorphism in gonadotropin control in adult rats. 8. The sex difference in the postcastration LH rise is dependent on the early sexual organization of the hypothalamus, even though in adulthood it can also be influenced by a variety of factors such as the stage of the estrous cycle, age of the animal, estradiol pretreatment, and history of release from feedback inhibition. 9. The characteristic pattern of gonadotropin secretion in the female infantile rat, which is sexually differentiated, can be related to an increase in hypophyseal receptors coupled to an increase in the intracellular calcium response to GnRH. Such events depend on the sexual organization of the hypothalamus. In males the greater sensitivity to GnRH at 30 days is reflected in an increase in pituitary GnRH receptors but not in an increase in the magnitude of Ca2+ mobilization induced by GnRH, therefore it is probable that in this situation alternative second messengers may modulate high sensitivity. Neonatal androgenization of the hypothalamus may decrease the hypophyseal response to GnRH by an alteration in receptor concentration and signal transduction during the infantile period. 10. Finally, serotonergic, dopaminergic, opioid, and noradrenergic regulation of GnRH varies with increasing age, and the sexual organization of the hypothalamus by testosterone or estrogens is a determinant in such regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号