首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this work was to study the structure formation of yogurt made with cultures containing ropy Lactobacillus delbrueckii ssp. bulgaricus (R), capsule-forming nonropy Streptococcus thermophilus (CNR), and noncapsule-forming nonropy cultures (NCNR). Similar gelation profiles were shown for milk fermented by ropy and nonropy lactic cultures. The gelation point occurred at lower pH values in milk fermented with R or NCNR compared to that of milk fermented with CNR culture. Differences between capsule forming ropy and nonropy cultures were observed in the aggregation behavior of the caseins. Gels made with R culture had the highest maximum in loss tangent (tan delta). However, this maximum occurred at the highest pH value when CNR culture was used. The earlier gelation of milk fermented by the encapsulated nonropy strain of Strep. thermophilus resulted in increased structure rearrangement as the pH dropped, interfering with the formation of a more compact structure.  相似文献   

2.
不同胞外多糖产生特性的乳酸菌菌种对酸乳品质的影响   总被引:2,自引:0,他引:2  
不同EPS产生量的两种乳酸菌,用于酸乳的生产,在4种不同菌株组合形成的发酵乳中,球、杆菌比例和乳糖消耗基本一致,但是在粘度、EPS产生、EPS的单糖组成、对乳清析出的影响,以及感官等方面,均有区别。实验结果表明,在酸乳生产中,以产EPS的德氏乳杆菌保加利亚亚种不产EPS的唾液链球菌嗜热亚种组合较好。  相似文献   

3.
DNA fingerprints of lactic acid bacteria were generated by polymerase chain reaction using a primer based on the repetitive elements found in the genome of Streptococcus pneumoniae (BOX-PCR). The method made it possible to identify 37 isolates from raw milk. industrial starters and yogurt. Differentiation at species, subspecies and strain level was possible for Lactobacillus delbrueckii subsp. lactis, Lb. delbrueckii subsp bulgaricus and Str. thermophilus. BOX-PCR was also applied to studying the strain composition of a starter culture and the direct detection of strains in commercial fermented milk.  相似文献   

4.
A new processing method that rapidly forms curds and whey from milk has the potential to improve cheesemaking procedures if cheese starter cultures can tolerate the processing conditions. The survival of Lactobacillus delbrueckii ssp. bulgaricus, Lactococcus lactis ssp. lactis, or Streptococcus thermophilus through this new process was evaluated. Inoculated milk containing 0, 1, or 3.25% fat or Lactobacillus MRS broth or tryptone yeast lactose broth (depending on microorganism used) was sparged with CO2 to a pressure of 5.52 MPa and held for 5 min at 38 degrees C. Broth contained 7.93 to 8.78 log CFU/ ml before processing and 7.84 to 8.66 log CFU/ml afterward. Before processing, milk inoculated with L bulgaricus, L. lactis, or S. thermophilus contained 6.81, 7.35, or 6.75 log CFU/ml, respectively. After processing, the curds contained 5.68, 7.32, or 6.50 log CFU/g, and the whey had 5.05, 6.43, or 6.14 log CFU/ml, respectively. After processing, the pHs of control samples were lower by 0.41 units in broth, 0.53 units in whey, and 0.89 units in curd. The pH of the processed inoculated samples decreased by 0.3 to 0.53 units in broth, 0.32 to 0.37 units in whey, and 0.93 to 0.98 units in the curd. Storing curds containing L. lactis at 30 degrees C or control curds and curds with L. bulgaricus or S. thermophilus at 37 degrees C for an additional 48 h resulted in pHs of 5.22, 5.41, 4.53, or 4.99, respectively. This study showed that milk inoculated with cheese starter cultures and treated with CO2 under high pressure to precipitate casein-produced curds that contained sufficient numbers of viable starter culture to produce lactic acid, thereby decreasing the pH.  相似文献   

5.
This study investigated the viability of probiotic ( Lactobacillus acidophilus LA5, Lactobacillus rhamnosus LBA and Bifidobacterium animalis subsp . lactis BL-04) in milk fermented with Lactobacillus delbrueckii subsp . bulgaricus LB340 and Streptococcus thermophilus TAO (yoghurt – Y). Each probiotic strain was grown separately in co-culture with Y and in blends of different combinations. Blends affected fermentation time(s), pH and firmness during storage at 4°C. The product made with Y plus B. animalis subsp . lactis and L. rhamnosus had counts of viable cells at the end of shelf life that met the minimum required to achieve probiotic effect. However, L. acidophilus and L. delbrueckii subsp . bulgaricus were inhibited.  相似文献   

6.
This work aimed to select heat-resistant probiotic lactobacilli to be added to Fior di Latte (high-moisture cow milk Mozzarella) cheese. First, 18 probiotic strains belonging to Lactobacillus casei, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, and Lactobacillus reuteri were screened. Resistance to heating (65 or 55°C for 10 min) varied markedly between strains. Adaptation at 42°C for 10 min increased the heat resistance at 55°C for 10 min of all probiotic lactobacilli. Heat-adapted L. delbrueckii ssp. bulgaricus SP5 (decimal reduction time at 55°C of 227.4 min) and L. paracasei BGP1 (decimal reduction time at 55°C of 40.8 min) showed the highest survival under heat conditions that mimicked the stretching of the curd and were used for the manufacture of Fior di Latte cheese. Two technology options were chosen: chemical (addition of lactic acid to milk) or biological (Streptococcus thermophilus as starter culture) acidification with or without addition of probiotics. As determined by random amplified polymorphic DNA-PCR and 16S rRNA gene analyses, the cell density of L. delbrueckii ssp. bulgaricus SP5 and L. paracasei BGP1 in chemically or biologically acidified Fior di Latte cheese was approximately 8.0 log(10)cfu/g. Microbiological, compositional, biochemical, and sensory analyses (panel test by 30 untrained judges) showed that the use of L. delbrueckii ssp. bulgaricus SP5 and L. paracasei BGP1 enhanced flavor formation and shelf-life of Fior di Latte cheeses.  相似文献   

7.
齐强强  褚莹  丁武 《食品工业科技》2012,33(9):85-87,91
为研究乳酸乳球菌乳酸亚种丁二酮变种(Lactococcus lactis ssp.Lactis biovar diacetylactis)在单菌发酵,或与嗜热链球菌(Streptococcus thermophilus)和保加利亚乳杆菌(Lactobacillus bulgaricus)混合发酵条件下对羊奶中脂肪酸含量影响情况,利用气相色谱法进行脂肪酸分析,结果表明:L.diacetylactis发酵显著提高了羊奶中、短链脂肪酸百分含量,降低了长链脂肪酸百分含量(p<0.05);L.diacetylactis接种量对发酵羊奶成品中脂肪酸组成影响不显著;L.diacetylactis与S.thermophilus、L.bulgaricus混合发酵羊奶中脂肪酸组成不受S.thermophilus、L.bulgaricus影响。因此,L.diacetylactis发酵适用于开发风味良好、营养合理的酮香型羊奶保健品。  相似文献   

8.
Binding of free bile acids by cells of yogurt starter culture bacteria   总被引:4,自引:0,他引:4  
Several strains of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus, which produced exocellular polysaccharides (EPS), varied in the amount produced. The streptococci tended to produce the most EPS per milliliter of culture; however, when compared on the basis of amounts per 10(7) cfu, the lactobacilli produced the most. Lactobacillus delbrueckii ssp. bulgaricus strains Lb-18 and Lb-10442 and S. thermophilus St-143 produced significantly larger amounts per 107 cfu than did other strains tested. These three cultures plus two strains of the streptococci that produced the greatest amounts of EPS per ml of culture were tested for the ability to bind bile acids from laboratory media. The two cultures of L. delbrueckii ssp. bulgaricus (Lb-18 and Lb-10442) bound significantly higher amounts of cholic acid than did the three strains of streptococci. These two cultures of lactobacilli bound up to 15.3% of the cholic acid present in laboratory media, up to 452 microg/mg of EPS and 2.9 microg/10(7) cfu. None of the cultures tested in this study were able to bind the conjugated bile acid, glycocholic acid.  相似文献   

9.
Viability of dairy-borne Salmonella enterica ssp. enterica serovar Typhimurium PT8 was studied during the fermentation of skim milk by thermophilic lactic acid bacteria (LAB). Longer generation times of Salmonella were found in mixed cultures of skim milk containing Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus or a mixture of them (1:1), as compared with single cultures of the pathogen. Salmonella was less able to survive in mixed cultures with these LAB during prolonged incubation at 41°C and also during cold storage of the fermented milk. L actobacillus ssp. bulgaricus and its mixture with S. thermophilus were more inhibitory to the growth and survival of Salmonella than was S. thermophilus . This was associated with higher ability of L . ssp. bulgaricus and the mixture to develop acidity in milk than S. thermophilus . Examining the antibacterial activity of these LAB towards Salmonella showed that other factors including heat-resistant and heat-labile compounds were involved in inhibiting the pathogen by these cultures. The viability of the same Salmonella strain during the preparation and cold storage of buffalo's yogurt was also examined. Salmonella was found to survive longer in yogurt made with starter containing probiotic bacteria than in that prepared with the traditional starter. This was ascribed to the development of lower pH by the traditional starter.  相似文献   

10.
The effects of sugar substrates on capsule size and production by some capsule-forming nonropy and ropy dairy starter cultures were studied. Test sugars (glucose, lactose, galactose, or sucrose) were used as a sole carbohydrate source and the presence of a capsule and its size were determined by using confocal scanning laser microscopy. Nonropy strains produced maximum capsule size when grown in milk. Strains that did not produce capsules in milk did not produce them in any other growth medium. Specific sugars required for capsule production were strain-dependent. Increasing lactose content of Elliker broth from 0.5 to 5% or adding whey protein or casein digest produced larger capsules. Whey protein concentrate stimulated production of larger capsules than did casamino acids or casitone. Some Streptococcus thermophilus strains produced capsules when grown on galactose only. Nonropy strains of Lactobacillus delbrueckii subsp. bulgaricus produced capsules on lactose, but not on glucose. A ropy strain of Lactobacillus delbrueckii subsp. bulgaricus produced a constant capsule size regardless of the growth medium. The ability of some strains of Streptococcus thermophilus to use galactose in capsule production could reduce browning of mozzarella cheese during baking by removing a source of reducing sugar. Media that do not support capsule production may improve cell harvesting.  相似文献   

11.
Cryo-scanning electron microscopy was used to visualize the microstructure of two types of cheese (Karish and Feta) and milk fermented with different ropy and non-ropy strains of lactic acid bacteria. Specimen frozen in liquid nitrogen slush were transferred in a frozen state and under vacuum into the preparation chamber where they were fractured, etched and coated with gold. Specimen were then transferred under vacuum onto the cold stage and imaged using scanning electron microscopy (SEM). Milk fat and exopolysaccharide (EPS) were visible in pores within the protein network. Cheese and fermented milk made with EPS-producing cultures exhibited a porous structure in which the largest pores were associated with visible EPS. A compact structure with small pores was seen in cheese and milk fermented with EPS non-producing cultures. EPS and protein appeared to be segregated in both cheese and fermented milk. EPS formed a network-like structure. Differences were observed in the microstructure of EPS between moderately ropy and highly ropy strains. A relatively long etching (sublimation) time caused EPS to appear as thin filaments similar to those seen with conventional SEM.  相似文献   

12.
The effects of fermentation of aqueous extracts of peanuts (peanut milk) with Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus salivarius ssp. thermophilus, separately and in combination, on selected chemical and sensory qualities were investigated. Changes in pH, titratable acidity and viable cell populations indicated that there was a synergistic interaction between L. delbrueckii ssp. bulgaricus and S. salivarius ssp. thermophilus during fermentation. Analysis of headspace volatiles revealed that hexanal, which is one of the compounds responsible for undesirable green/beany flavor in peanut milk, completely disappeared as a result of fermentation. S. salivarius ssp. thermophilus was more effective than L. delbrueckii ssp. bulgaricus in reducing the hexanal content. The acetaldehyde content of peanut milk increased during fermentation. Changes in concentrations of these volatile compounds were correlated with sensory evaluation scores which showed that a significant (P less than or equal to 0.05) decrease in green/beany flavor and a significant increase in creamy flavor occurred as a result of fermentation.  相似文献   

13.

ABSTRACT

We examined the effect of storage time on culture viability and some rheological properties (yield stress, storage modulus, loss modulus, linear viscoelastic region, structural recuperation and firmness) of fermented milk made with Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus (LA) and Bifidobacterium animalis ssp. lactis in coculture with Streptococcus thermophilus (ST). Acidification profiles and factors that affect viability (postfermentation acidification, acidity and dissolved oxygen) were also studied during 35 days at 4C. Fermented milk prepared with a coculture of ST and Bifidobacterium lactis gave the most constant rheological behavior and the best cell viability during cold storage; it was superior to ST plus LA for probiotic fermented milk production.

PRACTICAL APPLICATIONS

Probiotic cultures should grow quickly in milk, provide adequate sensory and rheological properties to the product, and remain viable during storage. Commercially, it is very common to use yogurt starter culture (i.e. Streptococcus thermophilus[ST] and Lactobacillus delbrueckii ssp. bulgaricus) in combination with the probiotic bacteria in order to reduce fermentation time. However, LB tends to post acidify fermented milk, which reduces the viability of the probiotic bacteria; thus, it is recommended to use starter cultures devoid of this species. We found that the technological properties and the viability of the probiotic bacterium Bifidobacterium animalis ssp. lactis BL O4 in coculture with ST make it suitable for probiotic fermented milk production; it produces rheological characteristics similar to those of yogurt.  相似文献   

14.
利用16S rDNA序列及tuf-RFLP鉴定蒙古国发酵乳中的乳酸菌   总被引:2,自引:1,他引:1  
运用16S rDNA序列分析和tuf-RFLP技术对采于蒙古国扎布汗省的25份发酵乳样中分离出的110株乳酸菌进行鉴定。首先将分离的110株乳酸菌的16S rRNA基因进行扩增,测序并构建系统发育树,初步鉴定为41株嗜热链球菌,40株瑞士乳杆菌,11株德氏乳杆菌保加利亚亚种,2株发酵乳杆菌,1株乳明串珠菌,2株肠膜明串肠膜亚种,1株乳酸乳球乳酸亚种和12株属于干酪族的菌株。由于干酪乳杆菌族的16S rDNA序列差异很小,故采用tuf-RFLP技术对这12株进行了进一步的验证,通过分离菌株与模式菌株tuf-RFLP图谱的比较分析,结果表明这12株菌均为干酪乳杆菌。  相似文献   

15.
The growth of Streptococcus salivarius subsp. thermophilus, Lactococcus lactis subsp. lactis, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus acidophilus and Lactobacillus paracasei was studied in a pH-auxostat. The computer-controlled smooth change of pH or temperature was used to study the effect of pH and temperature on the culture characteristics (specific growth rate mu growth yield Y(ATP) and specific lactate production rate Q(ATP)). The behaviour of mu and Q(ATP) with an increase of temperature suggested that ATP production capacity was an important factor in determining the maximum growth rate of lactic acid bacteria (LAB). The decrease of Y(ATP) with increase of temperature resulted in the decrease of specific growth rate while Q(ATP) remained constant or even increased. With the decrease of pH, decrease of both Y(ATP) and Q(ATP) was observed. S. thermophilus St20 having the highest maximum specific growth rate of 2.2 h(-1) at 44 degrees C was the most acid sensitive strain. The L. paracasei E1H3 having the lowest mu(max) was the most tolerant strain to pH change. The behaviour of mixed culture of L. bulgaricus and S. thermophilus in milk in a pH-auxostat with pH-decrease was in agreement with the pure culture experiments of the same species. The study showed that pH-auxostat with smooth controlled change of pH and temperature is an effective method for determination of technological characteristics and comparative physiological study of LAB.  相似文献   

16.
Pyroglutamic acid is present in high amounts (0.5g/ 100g) in many cheese varieties-and particularly in extensively ripened Italian cheeses such as Grana Padano and Parmigiano Reggiano. An in vivo model system for cooked mini-cheese production and ripening acceleration was set up to demonstrate the ability of thermophilic lactic acid bacteria, used as a starter, to produce pyroglutamic acid (pGlu). In mini-cheeses stored at 38 and 30 degrees C for up to 45 d, all starters tested produced different amounts of pGlu. In descending order of pGlu production, the bacteria analyzed were: Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. lactis. Evidence for the presence of glutamine to pGlu cyclase activity in lactic acid bacteria was provided. Cell lysates obtained from cultures of L. helveticus, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and S. thermophilus showed the ability to cyclize glutamine to pGlu, resulting in processing yields from 1.4 to 30.3%, depending on the subspecies. Formation of pGlu from free glutamine appeared to be similar to that observed using a glutamine-glutamine dipeptide substrate. Under the experimental conditions applied, pGlu aminopeptidase activity was only detected in L. helveticus. Thus, pGlu formation in long-ripened cooked cheese may depend on the activity of thermophilic lactic acid bacteria.  相似文献   

17.
The aim of this work was to identify the bacterial biodiversity of traditional Zabady fermented milk using PCR-temporal temperature gel electrophoresis (PCR-TTGE) and PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Most of the identified bacterial species in Zabady samples belonged to lactic acid bacteria (LAB), e.g., Streptococcus thermophilus, Lactococcus garvieae, Lactococcus raffinolactis, Lactococcus lactis, Leuconostoc citreum, Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus johnsonii. Using the culture-dependent and independent methods, the streptococcal and lactococcal groups appeared to be the major bacterial species in Zabady fermented milk, whereas the lactobacilli were the minor ones. The main dominant species was St. thermophilus followed by Lc. garvieae. Other molecular tools, e.g., species-specific PCR assay and cloning and sequencing strategy were used to confirm the TTGE and DGGE results. Lc. garvieae, Lc. raffinolactis, Ln. citreum, and Lb. johnsonii were identified for the first time in this type of Egyptian fermented milk.  相似文献   

18.
The production of acetaldehyde, diacetyl and ethanol was evaluated in whole plain yoghurts manufactured with commercial starter cultures, yoghurt acquired in a local market, and milk fermented by a single culture of either Streptococcus thermophilus or Lactobacillus delbrueckii ssp. bulgaricus . The headspace technique was used for sample preparation, following identification and quantification by gas chromatography. During an 8-h incubation period, mixed cultures were the most efficient in lowering the pH (from 6.30 to 4.8), followed by S. thermophilus (from 6.30 to 5.18) and L. bulgaricus (from 6.30 to 5.8). During the storage period, however, a single culture of L. bulgaricus decreased the pH more than S. thermophilus , but still less than the mixed commercial cultures. Plain yoghurts acquired in the market, those made with commercial starter cultures, and fermented milks obtained with single cultures showed, after 21 days of storage, concentrations of acetaldehyde from 11 to 35 mg/L, and of diacetyl from 0 to 0.85 mg/L. An increasing concentration of ethanol was observed during the storage period, and its production was observed even in the incubation stage of all products. It was also observed that the acetaldehyde concentration was inversely correlated to ethanol production in some products. The combination of headspace, identification and quantification techniques by gas chromatography in this work was efficient in the identification and quantification of the major aromatic compounds and ethanol content of yoghurt.  相似文献   

19.
The effects of milk products fermented by Bifidobacterium longum strain BL1, a probiotic strain, on blood lipids in rats and humans were studied. Rats were fed a cholesterol-enriched experimental diet, supplemented with lyophilized powders of 1) acid milk (control), 2) milk fermented with a mixed culture of ordinary yogurt starters composed of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (SL), and 3) bifidobacterium milk fermented with the probiotic B. longum strain BL1, respectively. The bifidobacterium milk feeding brought about significant lowering of the serum concentrations of total cholesterol, low-density lipoprotein cholesterol, and triglycerides, in comparison with the control, while no change in high-density lipoprotein cholesterol concentration was observed. On the other hand, supplementation with SL milk resulted in only slight, nonsignificant decreases in serum lipid concentrations in comparison with the control. In the human study, 32 subjects with serum total cholesterol ranging from 220 to 280 mg/dl were randomly assigned to two treatments: 1) intake of a low-fat drinking yogurt prepared with ordinary yogurt starters composed of S. thermophilus and L. delbrueckii subsp. bulgaricus (P-group) and 2) intake of a low-fat drinking yogurt prepared with the two ordinary yogurt starters plus B. longum strain BL1 (B-group). After intake for 4 wk at 3 x 100 ml/day, reduction of serum total cholesterol was observed in approximately half of the B-group subjects; a particularly significant decrease in serum total cholesterol was found among subjects with moderate hypercholesterolemia (serum total cholesterol > 240 mg/dl). However, the serum lipid concentrations in the P-group subjects were almost stable during the experimental periods. The present results indicate the potential of the probiotic B. longum strain BL1 in serum lipid improvement.  相似文献   

20.
高加索酸奶中乳酸菌的分离与鉴定   总被引:1,自引:0,他引:1  
从自然发酵的5份酸奶样品中,通过平板划线等方法分离筛选乳酸菌。经形态特征,生理生化特性及糖发酵试验等,筛选到12株乳酸菌,分别为:乳杆菌7株,其中:3株德氏乳杆菌保加利亚亚种(Lactobacillus delbrueckii subsp.bulgaricus),3株瑞士乳杆菌(Lactobacillus hel-veticus),1株罗伊氏乳杆菌(Lactobacillus reuteri);乳酸球菌5株,包括3株嗜热链球菌(Streptococcus thermophilus),2株乳酸乳球菌乳脂亚种(Lactococcus lactis subsp.Cremoris)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号