首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
针对树脂膜熔渗(RFI)成型工艺过程中充模阶段树脂在预制件中的流动行为进行分析,根据牛顿流体在多孔介质中的渗流理论,在Darcy定律基础上使用有限元控制体技术建立二维等温流动控制方程,再对试验件进行几何建模和网格剖分,使用C++语言编写模拟成型工艺中树脂流动过程的程序。由计算实例可见,该方法能够很好地预测树脂浸渍过程中浸渍时间与预浸高度的关系,并确定流动前沿及模腔中的压力的变化规律。  相似文献   

2.
渗透率测定是树脂膜熔渗(RFI)工艺在复合材料设计和优化中最关键的技术.基于光导纤维视觉技术,通过纤维视觉传感器测量渗透率,能够在光强度下降的情况下探测出树脂的前进情况,这将易于我们在实际生产中在第一时间内准确地监测树脂的流动.  相似文献   

3.
为研制低成本树脂膜熔渗(RFI)工艺用环氧树脂膜 , 以环氧树脂 E51、高温潜伏性固化剂三氟化硼单乙胺和乙二醇为原料 , 采用正交设计方法对配方进行优化 , 并通过控制预聚反应程度的方法进行合成实验。对所研制树脂膜的化学流变特性进行测试研究 , 结果表明 , 树脂膜在130℃工作温度下 , 最低黏度达360 mPa· s , 小于1000 mPa· s的低黏度时间达 32 min , 凝胶时间为 48 min , 并且室温不粘手 , 可任意弯曲 , 适用于RFI工艺。通过不同升温速率的DSC扫描 , 分析了预聚原液和树脂膜的反应活化能 , 发现树脂膜反应活化能比预聚原液高 , 而且树脂膜的反应活化能随着固化度增加而增加。以双 Arrhenius公式为理论基础建立了树脂膜黏度和凝胶时间的预测函数 , 实验结果表明二者均具有良好的适用性。根据 RFI工艺对黏度的要求创立了熔渗力因子的表达方程 , 并通过该方程确定了理论最佳熔渗温度为128. 4 ℃。   相似文献   

4.
RTM工艺树脂流动过程数值模拟及实验比较   总被引:8,自引:5,他引:3       下载免费PDF全文
树脂充模是RTM工艺成型过程中的重要一环。研究了RTM工艺树脂流动过程的特点,建立了树脂渗流控制方程。采用贴体坐标/有限差分法模拟了树脂渗流过程,给出了不同时刻树脂流动前沿曲线及终止时刻压力场分布,计算结果与试验结果吻合良好。  相似文献   

5.
导流介质对真空导入模塑工艺树脂流动行为的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用可视化流动实验方法研究了高渗透率导流介质对真空导入模塑工艺中树脂流动行为的影响。结果表明: 导流介质能较大幅度地减少树脂的充模流动时间, 且充模时间随着导流介质使用比例的增加而呈线性减少的关系; 导流介质的提速作用随着预成型体厚度的增加而逐渐减弱; 预成型体上下表面树脂流动前沿位置差距与预成型体厚度呈良好的线性增加关系, 说明导流介质的影响作用具有明显的厚度效应。厚度效应原理为真空导入模塑工艺过程的参数优化和保证制品质量提供了理论依据。   相似文献   

6.
综述了树脂膜熔渗(RFI)成型工艺数值模拟所依赖的数学模型以及核心算法的研究进展,着重总结了树脂的流动、抑制孔隙产生、热传递以及固化动力学等方面数学模型的研究进展.对这些模型的研究有利于更加深入地理解成型工艺中复杂的物理和化学变化,通过数值模拟可以预测工艺参数,从而优化整个工艺过程、缩短研发周期.  相似文献   

7.
采用分段-集合计算方法, 对二步法三维编织变厚度变截面薄壁壳体RTM 充模工艺过程进行了较深入的理论研究。提出了较准确的树脂流动速度、树脂充模时间和树脂流动压力计算方程。数值预测值与充模试验结果具有良好的一致性, 所推导理论方程为合理设计RTM 充模工艺参数提供了理论依据。   相似文献   

8.
视窗化RTM工艺充模过程模拟仿真技术研究   总被引:11,自引:6,他引:5       下载免费PDF全文
根据RTM工艺树脂流动充模模型,研究和开发了基于FEM/CV算法的RTM工艺复杂渗流充模过程数值模拟软件平台-BHRTM-2。BHRTM-2在视窗系统下运行,带有FEM网格捕捉器窗口可直观方便地设置注射口、溢料口和工艺参数,操作简单,能够模拟复杂边界制件的树脂流动充模过程、显示充模过程中任意时刻模腔内压力的分布场、流动前峰和预测充模时间及可能的干斑缺陷位置,为RTM工艺设计与优化提供了有效技术手段。文中对BHRTM-2的模拟结果的正确性和可靠性进行了理论与实验验证,并给出了具体算例。   相似文献   

9.
为了考察树脂膜熔渗(RFI)工艺过程中树脂在高温条件下沿织物铺层厚度方向的不饱和渗透特性, 应用自行设计的测试系统, 考察了液体沿织物铺层厚度方向流动前锋的影响因素, 测试并分析了液体沿玻璃纤维铺层厚度方向渗透速率的主要影响因素及其变化规律。结果表明, 液体沿纤维织物厚度方向流动为宏观上的一维流动。 真空压力增大、 树脂温度升高、 纤维体积分数减小, 均可使液体的渗透速率加快。另外, 对比发现, 70℃ E-51 环氧树脂沿玻璃纤维铺层厚度方向的渗透特性与室温下硅油的渗透特性基本相当。   相似文献   

10.
基于宏观熔体流动的基本理论及其流动过程中壁面滑移机理的分析,针对微注塑成型模具中熔体充模流动时的壁面滑移行为,建立了微小通道中高聚物熔体流动的壁面滑移理论模型。并用数值模拟方法,对不同滑移系数时微小通道中熔体的壁面滑移对流动速度、熔体压力等的影响进行了研究。结果表明,微小通道中的壁面滑移可使壁面处熔体的流动速度增加,压力损失减小,有利于熔体的充模流动。  相似文献   

11.
RTM工艺注模过程边缘效应模拟分析   总被引:6,自引:2,他引:4       下载免费PDF全文
RTM工艺需将纤维预制体预置到模具中,由于纤维预制体结构不均匀性和模具形状、尺寸等影响,极易产生边缘效应。边缘效应会严重影响树脂流场发展和压力场分布。本文作者采用等效渗透系数方法模拟边缘效应,得到了其影响下的树脂流动前峰曲线和压力场。研究表明:一方面边缘效应可能导致不期望的树脂流场发展而形成工艺缺陷——干斑;另一方面可以利用边缘效应提高工艺效率:常流率注射时减小合模压力和注射压力,常压力注射时可以减少注模时间。   相似文献   

12.
For rigid mold filling processes such as resin transfer molding, the resin flow stops when the preform is fully saturated with the resin. However, in vacuum assisted resin transfer molding process (VARTM), due to preform deformation the resin flow continues after the filling stage is complete as it does take a finite time for the pressure field to become uniform during this post-filling period. In this paper, the post-filling flow in the VARTM process with and without the membrane is examined. The governing equations for post-filling flow, in which the preform is allowed to deform, are developed with simplifying assumptions. A one-dimensional flow and deformation coupled process model is developed to simulate the time dependent pressure distribution during the post-filling stage. The model is implemented using finite differences, both in time and space, and utilizes the explicit time integration which is found to be conditionally stable. The change in pressure inside the mold during the post-filling stage is predicted for three different injection scenarios. The influence of the pressure distribution at the end of filling on the dwell time for the pressure to equilibrate and on the final thickness of the part is discussed. The effects of change in preform permeability and compliance on the dwell time and thickness are demonstrated and the extension of the model to more complex geometries and systems is outlined.  相似文献   

13.
通过引入沉浸函数建立了双尺度多孔介质非饱和流动模型,并采用有限元/控制体积法实现了恒压及恒流注射条件下液体模塑成型(LCM)工艺二维径向非饱和流动的数值模拟,得到了不同注射条件下纤维织物内的压力场分布及半饱和区域长度随时间的变化规律,并将双尺度非饱和理论结果与单尺度饱和理论结果进行对比。结果表明:非饱和流动过程中,半饱和区域内的压力和压力梯度明显下降;半饱和区域长度随时间逐渐增加随后保持稳定,当流动前沿到达出口后半饱和区域长度开始逐渐减小;当两个主方向渗透率不同时,沿主方向半饱和区域长度也不同,渗透率越大该方向的半饱和区域长度也越大,纤维织物完全浸润时间取决于较小的渗透率。研究结果对合理预测树脂填充过程中压力分布及纤维预制件的浸润具有指导意义。  相似文献   

14.
Decreasing the amount of residual voids during the resin infiltration into fibrous porous media is an important aspect in manufacturing high performance composite materials.In order to better understand void transports and flow behaviors in filling process,which affects immediately the final void content,a finite-element scheme for transient simulations of the void migration in a transverse flow through the uniaxial micro-structured fibrous media is developed in this work.A volume-of-fluid (VOF) method has been incorporated in the Eulerian frame to capture the free surface of the resin flow.The implementation of periodic boundary condition to the vertical direction avoids unwanted wall effect.The void migration in a dual-scale fiber tow model was investigated.The voids are observed to be transported through the inter-tow region as well as entrapped into fiber tow.It is that the motion of void lagged behind macro flow front which implies that the adequate resin bleeding after mold filling is crucial to remove the entrapped air.  相似文献   

15.
Decreasing the amount of residual voids during the resin infiltration into fibrous porous media is an important aspect in manufacturing high performance composite materials.In order to better understand void transports and flow behaviors in filling process,which affects immediately the final void content,a finite-element scheme for transient simulations of the void migration in a transverse flow through the uniaxial micro-structured fibrous media is developed in this work.A volume-of-fluid (VOF) method has been incorporated in the Eulerian frame to capture the free surface of the resin flow.The implementation of periodic boundary condition to the vertical direction avoids unwanted wall effect.The void migration in a dual-scale fiber tow model was investigated.The voids are observed to be transported through the inter-tow region as well as entrapped into fiber tow.It is that the motion of void lagged behind macro flow front which implies that the adequate resin bleeding after mold filling is crucial to remove the entrapped air.  相似文献   

16.
In the resin transfer molding process, residual air in the pores of fiber preform results in dry spots and microvoids in the finished product. The dry spots are usually formed due to irregular permeability of fiber mat and improper injection locations. The microvoids result from non-uniform microarchitecture of the fiber preform, and they are transported through the gap between fiber tows during infiltration of the resin. In this study, a real-time simulation/control method was proposed to actively control the formation and the transport of air voids during the mold filling. The flow equations were solved in real time to predict the change of the flow front shape. The flow front was detected by optical sensors and the control actions were taken based on the sensor signals. Through this automated simulation/control scheme, a real-time control of resin flow could effectively avoid the dry spots and minimize the formation of microvoids by modulating the injection pressure.  相似文献   

17.
The resin transfer molding (RTM) process is used to manufacture advanced composite materials made of continuous glass or carbon fibers embedded in a thermoset polymer matrix. In this process, a fabric preform is prepared, and is then placed into a mold cavity. After the preform is compacted between the mold parts, thermoset polymer is transferred from an injection machine to the mold cavity through injection gate(s). Resin flows through the porous fabric, and eventually flows out through the ventilation port(s). After the resin cure process (cross‐linking of the polymer), the mold is opened and the part is removed. The objective of this study is to verify the application of calcium carbonate mixed in resin in the RTM process. Several rectilinear infiltration experiments were conducted using glass fiber mat molded in a RTM system with cavity dimensions of 320 × 150 × 3.6 mm, room temperature, maximum injection pressure 0.202 bar and different content of CaCO3 (10 and 40%) and particle size (mesh opening 38 and 75 µm). The results show that the use of filled resin with CaCO3 influences the preform impregnation during the RTM molding, changing the filling time and flow front position, however it is possible to make composite with a good quality and low cost.  相似文献   

18.
Mold filling in polymer and composite processing is usually modelled as a special case of Darcy flow in porous media. The flow pattern and the time necessary to fill the mold depend on the ‘gate’ locations where resin is injected into the closed mold. In composite manufacturing, these are commonly outlets of small tubes transporting resin from a reservoir and their diameters are several orders of magnitude smaller than the mold dimensions. Similar size issue is also encountered in other applications of flow through porous media, such as oil and water pumping and drilling. Traditionally, these inlets are modelled by pressure or flow rate boundary condition as applied at a node of the finite element mesh that represents the injection gate. The omission of the inlet radius in the model results in a mathematical singularity as the mesh gets refined. The computed pressure or flow field depends on the mesh size and does not converge to the accurate solution, as the finite element mesh is refined. It is possible to deal with this phenomenon by modelling the inlet geometry more accurately but this approach is inefficient, as it requires additional degrees of freedom and, above all, significantly complicates the modelling process if the inlet location is not fixed a priori. This paper presents a more efficient alternate solution. It uses special ‘gate’ elements embedded in the mesh around the injection locations. Instead of adjusting the geometrical modelling of the injection location, the adjacent elements use modified shape functions to accurately model pressure field in the neighbourhood of small radial inlet. The proper pressure field shape‐functions for ‘gate’ elements based on linear finite elements are derived. The implementation in an existing mold filling simulation and how the ‘gate elements’ are automatically selected is described. An example to demonstrate the use of ‘gate’ elements and convergence towards the accurate solution with mesh refinement is presented. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号