首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
余云燕  孔嘉乐 《振动与冲击》2023,(10):82-91+164
梁理论的合理选择对风机横向自振频率的求解意义重大。以往提出的海上风机自振频率计算方法都基于某一种梁理论,且缺乏各参数的敏感性分析。为了对比不同梁理论对风机自振频率求解的影响,采用回传射线矩阵法,分别基于Bernoulli-Euler梁、经典Timoshenko梁和修正Timoshenko梁理论,提出海上风机横向自振频率计算方法,通过实测数据验证了该方法的准确性,并综合对比各参数的敏感性。研究结果表明:Bernoulli-Euler梁理论未考虑剪切变形与转动惯量,自振频率计算结果略大于Timoshenko梁理论;剪切变形引起的转动惯量可以忽略不计,修正Timoshenko梁理论与经典Timoshenko梁理论计算结果一致,但物理意义更加清晰;基频对塔筒结构参数的敏感性最高,其次是连接段与桩基;基频对塔筒高度的敏感性最高,对海床高度与叶轮机舱组件质量的敏感性较高,壁厚变化对基频的影响不显著。  相似文献   

2.
有缺陷埋置框架的波动响应及影响因素研究   总被引:4,自引:0,他引:4  
采用回传射线矩阵法对埋置框架的缺陷检测进行了研究。局部缺陷用减小横截面面积来模拟。比较了有缺陷埋置框架与无缺陷埋置框架的速度波,分析了接收点、脉冲荷载作用点、缺陷位置和程度等对速度波的影响。结果表明:斜向脉冲荷载作用下的轴向速度波可判定缺陷存在,确定缺陷位置和缺陷段长度,最佳接收点和最佳荷载作用点位于要判定缺陷的基桩上。  相似文献   

3.
多缺陷框架结构的波动响应   总被引:1,自引:0,他引:1  
局部缺陷用减小杨氏模量和剪切模量来简化,研究了多缺陷框架在阶跃荷载作用下的轴向速度波,判别缺陷是否存在、确定缺陷位置和程度,并与无缺陷框架比较。结果表明:对多缺陷框架的每一节点分别施加阶跃荷载,分析荷载作用点或荷载作用点附近接收点的信号,可准确判定多缺陷框架所有杆件的缺陷信息。  相似文献   

4.
研究门式框架结构在瞬态波动作用下的动力响应求解和自振特性分析问题。建立了局部坐标系下节点位移协调条件和力平衡条件,借助回传射线矩阵法,得到了方波脉冲激振力作用下的门式框架结构的动力学响应函数。在此基础上,通过离散Fourier逆变换和卷积变换,得到单位脉冲作用下框架结构的瞬态波动响应,并进一步探讨了门式框架结构的自振频率和模态特征。  相似文献   

5.
有损伤框架结构中的波动分析   总被引:7,自引:3,他引:7  
基于回传射线矩阵法,研究了有损伤框架结构在水平方波脉冲作用下脉冲作用点的速度波,结构的局部损伤用减小受损单元的横截面面积来模拟。结果表明:改变脉冲作用点位置,通过脉冲作用点横向速度波首波波幅的变化可以确定受损单元的起始位置;当脉冲作用点在受损单元的起始位置时,脉冲作用点横向速度波首波波幅变化越大,损伤越大,脉冲作用点横向速度波的第一个波谷到达时间越晚,损伤单元越长。  相似文献   

6.
将回传射线矩阵法推广至桩土系统的振动分析中,采用基于Timoshenko梁理论的Winkler地基模型,运用回传射线矩阵法及求根法求解桩顶固定且部分桩体埋入弹性地基中时桩的自振特性,并与基于有限元分析软件SAP2000的计算结果比较,验证利用回传射线矩阵法求解埋置结构自振特性的有效性和计算精度。同时,分析桩顶固定且部分桩体埋入黏弹性地基中时土体弹簧系数及土体阻尼系数对桩基自振频率和振型的影响。结果表明:随着土体弹簧系数的增大,埋置结构的各阶自振频率增大,土体弹簧系数对衰减系数没有影响,对埋置结构振型的影响较小;随着土体阻尼系数的减小,埋置结构的各阶自振频率增大,衰减系数相应减小,土体阻尼系数对埋置结构的低阶振型影响尤为明显,对高阶振型的影响较小。  相似文献   

7.
自振特性在结构的动力分析中具有重要的意义。将回传射线矩阵法(MRRM)推广到地基梁自振特性的研究中,通过节点力平衡和位移协调方程及对偶局部坐标系下单元相位关系,建立两端简支、两端自由、两端固支、简支-自由、简支-固支及固支-自由这六种边界条件下黏弹性Pasternak地基上的Bernoulli-Euler梁的回传射线矩阵,进而得到其频率方程。根据单一局部坐标系下的边界条件,推导出模态函数解析表达式,进一步根据正交归一化条件求解模态函数表达式中的未知参数。通过具体算例验证了回传射线矩阵法求解的正确性,并对不同边界条件下的自振频率、衰减系数及模态函数进行了分析。为黏弹性地基梁的振动特性研究提供理论基础。  相似文献   

8.
针对(铰接式)门式框架结构平面外动力失稳问题进行了试验研究,采用新型的非接触式激振方法,进行了门式框架自参数内共振和非内共振的试验研究,观测和分析了门式框架结构平面外失稳的现象和机理,测量并探究了自参数共振的不稳定区域。结果表明:在门式框架的横梁上施加相当于柱自振频率两倍的周期性激励时,横梁的振动会作为参数激励引发柱在平面外发生主参数共振(动力失稳);若横梁自振频率约为柱自振频率二倍时,结构将发生平面外的自参数内共振;对比自参数内共振和非内共振不稳定区域,发现前者不稳定区域覆盖面积更大,说明自参数内共振更易触发,更具危害性。因此,在门式框架结构的工程设计中应关注自参数共振,尤其是自参数内共振的风险,避免其诱发结构平面外动力失稳。  相似文献   

9.
基于回传射线矩阵法,求得单位脉冲作用下均质土中部分埋入任意段变模量桩的桩顶速度导纳,利用Fourier逆变换和卷积定理得到瞬态半正弦激振力作用下的桩顶时域速度响应。比较部分埋入变模量桩与部分埋入完整桩的桩顶速度导纳和反射波,分析缺陷长度和埋深、缺陷程度和脉冲持续时间对部分埋入变模量桩桩顶速度导纳和反射波的影响。结果表明:部分埋入变模量桩的反射波有延迟现象,缺陷长度和程度影响速度导纳曲线中波峰波谷对应的频率值,缺陷埋深对其没有影响。  相似文献   

10.
随着风电齿轮箱朝10 MW及以上超大功率发展,其全尺寸测试受到试验台架功率限制的问题愈发明显。该研究提出了兆瓦级风电齿轮箱传动系统瞬态动力学响应等效缩减方法,以某型5 MW风电齿轮箱为研究对象,建立了风电齿轮箱传动系统变速动力学模型,并基于量纲理论推导了适用变速工况的风电齿轮箱传动系统等效缩减动力学相似关系,对比分析了原型与缩减后的风电齿轮箱传动系统固有特性与振动响应。研究结果表明,缩减后的风电齿轮箱传动系统固有频率、模态振型与原型满足相似关系,并且缩减后的风电齿轮箱传动系统稳态响应、瞬态响应均与原型满足相似关系,最大误差小于3%。该方法可以为风电齿轮箱等效缩减设计提供一定的参考依据。  相似文献   

11.
土木结构的损伤识别技术对提升结构可靠性与安全性具有重要意义,也是土木结构健康监测研究中的热点问题。现有的损伤识别方法往往需要识别模态参数,或者需要准确获取结构外部载荷信息,极大限制了相关方法在实际工程中的应用。为克服现有方法的局限性,该文将结构动态响应重构方法引入到损伤识别中,提出了基于应变模态响应重构的损伤识别方法。构建结构健康状态的有限元模型,以损伤结构测量的信号输入,通过基于经验模态分解的应变重构方法,可以获取使用无损伤模型的结构全局模态响应。以传感器采集的模态响应和重构模态响应的差异作为有限元模型修正的依据,通过应变模态比值构建的传递率的灵敏度矩阵进行迭代运算,求得损伤位置及损伤程度。该方法无需获取结构的外部激励信息,通过高效的时域应变重构,能够在少量测量信号下实现对结构损伤的精确识别。为验证该方法的准确性和高效性,开展了连续梁单一损伤和多损伤识别研究,探讨了测量噪声和模态阶次选取对识别结果的影响,结果表明,该方法能够准确、高效识别不同程度的损伤,对测量噪声具有较强的鲁棒性。  相似文献   

12.
回传矩阵法自提出以来已被成功应用于平面桁架结构和层状介质的瞬态响应分析中.从编制统一的空间框架结构回传矩阵法动力计算程序的角度出发,给出回传矩阵法列式的统一推导过程,考虑材料阻尼、节点集中质量和弹簧阻尼支撑等因素,将原回传矩阵法推广应用到复杂空间框架结构的自振特性分析中.数值算例表明该方法在求解自振特性时具有计算精度高、求解代价小等优点.  相似文献   

13.
基于Biot理论和Bloch理论,研究了反平面波在一维液体饱和多孔声子晶体中的传播特性。求解液体饱和多孔介质中反平面波的波动方程;利用界面应力-位移连续条件得到了相邻单胞的传递矩阵,将传递矩阵和Bloch理论相结合计算了单胞的复能带结构;并且利用刚度矩阵法计算声子晶体的响应谱。分析了液体黏度系数、孔隙率和材料组分比对反平面波传播特性的影响。结果表明:随着黏度系数的增大,复能带的虚部先增大后减小,相应的传输先减弱后增强,复能带的实部在布里渊区边界处先变光滑后又变尖角。这些现象与黏性对快纵波的影响是一致的;随着孔隙率的增大,两种多孔介质的密度差变大,导致带隙变宽,带隙内的衰减增强;与快纵波不同的是高频通带对应的虚部仍然为零,这是由于反平面波和慢纵波之间不会发生相互作用;减小材料组分比发现第一条带隙变宽,带隙内的衰减增强,然而第二条带隙先变宽再变窄,带隙内的衰减先增强后减弱。估算的带隙中心频率值和数值结果基本一致。  相似文献   

14.
以黏弹性Pasternak地基上的Timoshenko梁为研究对象,研究其在两端简支、两端固支、简支-固支边界条件下的单跨地基梁及两跨连续地基梁(等跨和不等跨两种工况)的自振频率、衰减系数和模态。基于回传射线矩阵法,根据各种约束条件下的节点耦合条件,推导横向振动频率方程,通过观察两跨连续地基梁与单跨地基梁的频率方程,并通过具体算例,研究两跨连续地基梁与单跨地基梁自振频率之间的联系与区别,进一步给出前三阶模态。结果表明:两等跨连续地基梁自振频率方程可分为两个部分,且这两部分分别与两端简支和简支-固支边界条件下单跨地基梁的频率方程形式类同;其奇数阶自振频率与两端简支边界条件下单跨地基梁的偶数阶自振频率相等,而其偶数阶自振频率则与两端固支边界条件下单跨地基梁的偶数阶自振频率相同;不等跨的两跨连续Timoshenko地基梁的模态函数曲线幅值随阶数的增加降低最快。  相似文献   

15.
基于Euler-Bernoulli曲梁理论,考虑材料沿拱厚度方向呈梯度分布时中性层的改变,将变曲率功能梯度材料(Functionally Graded Materials,FGM)拱在弧线方向离散成多个曲拱单元。视每个曲拱单元为半径一定的圆弧拱单元,根据Hamilton变分原理推导出FGM圆弧拱单元的面内自由振动方程,进而求得了单元传递矩阵。利用传递矩阵法(Transfer Matrix Method,TMM)推导出变曲率FGM拱的面内自由振动特征方程,求解两端固定边界条件下变曲率FGM拱面内自由振动的固有频率,并将得到结果与现有文献作了比较,证明TMM对求解该问题的有效性。分析了曲率变化系数和材料体积分数变化系数对变曲率FGM拱的面内自由振动频率的影响。  相似文献   

16.
提出一种高阶调谐齿轮传动原理,定义了调谐齿轮的错时相位角。基于动态啮合力开展高阶调谐齿轮参数设计研究,推导出调谐齿轮最佳传动参数,验证调谐齿轮错时相位角、调谐阶数对动态响应的影响;结合具体案例,进行高阶调谐齿轮的动力学数值模拟,研究高阶调谐齿轮传动参数对系统动态啮合力以及振动响应的影响。研究结果表明,当调谐阶数为2(二阶调谐齿轮)、错时相位角为1/2个齿距时,调谐齿轮时变啮合刚度和接触力波动最小,振动位移以及振动加速度波动最小,从理论上验证了二阶调谐齿轮具有明显的减振作用。  相似文献   

17.
整体式桥的桥身与桥台之间没有设置支座和伸缩缝,而是刚性连接为一体,从而能极大地节省桥梁全寿命周期的维护与维修费用。但是由于季节性温度波动导致桥身长度变化,桥台后土体随之受到水平方向循环加载作用。桥台后土压力的发展变化,成为整体式桥研究的重点。另外,对整体式桥台在地震作用下的动力反应还缺乏认识。该文首先系统总结了关于整体式桥台后土压力的相关研究成果,包括现场监测、缩尺模型实验、土单元应力路径实验、以及数值模拟等,揭示出在这种特殊循环作用下桥台后土压力的变化规律,并对土压力累积机理进行了探讨。然后,该文总结了整体式桥台在地震作用下动力响应的相关研究成果,指出由于桥台与桥身的刚性连接,桥身惯性力对桥台与土动力相互作用产生很大影响。  相似文献   

18.
海上风机结构体系长期经受波浪、风等水平循环荷载的作用,从而引起地基刚度变化,海上风机结构体系属于动力敏感型结构,预测其自振频率的长期变化具有非常重要的工程意义。基于动力运动方程,考虑了桩土相互作用,通过嵌入地基刚度衰减模型考虑长期循环荷载引起的地基刚度变化,建立了单桩式海上风机结构自振频率的简化计算方法,利用实际工程和数值模拟验证了方法的可行性。最后通过开展参数分析,探讨长期循环荷载大小、加载次数对海上风机结构自振频率的影响规律;结果表明,循环荷载的增大、加载次数的增加会导致海上风机结构体系自振频率较小,风机结构体系的自振频率应偏移1P;该方法可以评估长期循环荷载下单桩式海上风机结构自振频率的变化,为近海风机结构自振频率的设计提供参考。  相似文献   

19.
在修正Timoshenko梁基础上,采用传递矩阵法推导了水下结构推进轴系简化模型的传递矩阵,实现各轴承位置处振动功率流的求解。以各轴承位置处传递功率流作为优化目标,选择三组不同的优化方案,取艉轴前后轴承刚度、推力轴承刚度以及轴承间距为优化变量对推进轴系参数进行优化。利用三维水弹性力学理论和三维水弹性声学分析软件,计算分析不同优化结果下水下结构的声源级曲线。结果表明:以艉轴后轴承、艉轴前轴承和推力轴承各处传递功率流最小为优化目标的优化方案最有利于减小水下结构的声辐射。  相似文献   

20.
基于计算流体动力学(CFD)方法,得到了山脉迎风面输电线路横向和竖向平均风速,研究了线路架设位置、杆塔呼称高、山脉坡度三种因素对输电线路风速的影响。建立了跨越山脉的四档输电线路有限元模型,分别利用山地风速和平地风速计算线路风偏响应,得到风偏角增大百分比。同时利用响应面方法建立了三种因素和风偏角增大百分比的二次回归方程。研究表明:当线路越靠近山脊,杆塔呼称高越高,线路风偏越严重。对于架设在山脉总高度3/4以下的线路,设计时可以适当减小设计风速,既保证线路风偏安全性又可提高经济性;架设在山脉总高度3/4以上的线路,应适当增大设计风速,以提高输电线路风偏安全性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号