共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《振动与冲击》2017,(22)
针对局部均值分解(Local Mean Decomposition,LMD)方法提取电梯导靴振动信号的故障特征分量时存在的模态混淆现象,本文提出了一种基于奇异值分解(Singular Value Decomposition,SVD)优化局部均值分解(Local Mean Decomposition,LMD)的电梯导靴振动信号故障特征提取方法。该方法以奇异值贡献率原则构造原始信号的Hankel矩阵,采用SVD对Hankel矩阵进行分解;将曲率谱原则与奇异值贡献率原则相结合对奇异值进行选择,将包含主要故障信息的奇异值进行逆重构,得到剔除噪声信号与光滑信号的突变信号;并利用LMD方法对突变信号进行故障特征提取,得到能够突出原始信号振动特征的故障特征分量。实例结果表明该方法有效改善了LMD的模态混淆现象,更准确地提取了振动信号的故障特征分量,为电梯导靴的故障诊断提供了一条有效的途径。 相似文献
3.
为了提取受强背景噪声干扰的信号中的弱故障特征,提出一种基于局部均值分解的多层混合滤噪方法(Local Mean Decomposition-Multilayer Hybrid De-noising,LMD-MHD)。针对LMD分解所得的乘积函数(Product Function,PF)分量可能存在虚假分量的问题,提出一种多指标综合决策方法,结合各指标在不同故障阶段的量化能力,筛选出合理的有效PF分量。将小波阈值滤噪设为奇异值分解(Singular Value Decomposition,SVD)的前置处理单元,使保留的较大奇异值以特征信息贡献为主,减少干扰成分,并采用信号快速傅里叶变换结果中主频率个数来确定奇异值重构阶数。轴承早期故障振动信号的试验结果表明,该方法能够可有效滤除随机噪声和脉冲干扰,提取强背景噪声下的早期弱故障特征,提高轴承故障诊断的准确性。 相似文献
4.
针对泄流结构振动信号非平稳性和特征信息被强噪声淹没的实际问题,提出一种基于具有自适应噪声的完整集成经验模态分解(CEEMDAN)和奇异值分解(SVD)联合的信号降噪方法。对一维泄流振动信号时程进行CEEMDAN分解,将信号分解为一系列固有模态函数分量(IMF),运用频谱分析方法筛选包含主要振动信息的IMF分量,滤除低频水流噪声,实现信号的初次滤波;利用排列熵理论确定含噪声较多的IMF分量,采用奇异值分解技术提取奇异值信息,运用奇异熵增量定阶理论滤除IMF分量中的高频噪声,实现信号的二次滤波;将包含结构振动信息的IMF分量重构,得到泄流结构的工作特征信息。结合拉西瓦模型振动实测数据,运用该方法进行计算分析,滤除高频和低频噪声,提取结构振动特征信息;结果表明该方法在泄流结构特征信息提取方面具有优越性,可为泄流结构在线监测和安全运行提供依据。 相似文献
5.
针对变分模态分解(variational mode decomposition,VMD)中模态数K和惩罚因子α无法自适应确定的问题,提出了基于快速变分模态分解(fast VMD,FVMD)的滚动轴承故障特征提取方法。首先,利用频谱趋势分割方法对滚动轴承振动信号进行分析,确定频谱趋势分割边界,进而自适应确定VMD的分解模态数K和惩罚因子α、模态初始中心频率ω;其次,根据参数K、α、ω,完成原始振动信号的自适应分解,并基于有效权重峭度准则提取有效本征模态函数(intrinsic mode function,IMF)分量;最后,利用希尔伯特包络解调计算有效IMF分量重构信号的包络频谱图,完成滚动轴承故障特征的提取。使用仿真信号、美国凯斯西储大学(Case Western Reserve University,CWRU)和美国航空航天局(National Aeronautics and Space Administration,NASA)的滚动轴承数据完成所提方法与传统VMD方法的对比试验。结果表明,所提方法能够自适应确定VMD的分解模态数K和惩罚因子α,提高VMD的计算效率,同时有效提取到滚动轴承的故障特征频率,证明了所提方法的有效性和可行性。 相似文献
6.
针对岩体破裂信号与爆破振动信号难以识别的问题,采用傅里叶变换(FT)得到其频谱分布,并确定划分为6个频带提取信号特征。借助频率切片小波变换(FSWT)将信号按上述频带切片并重构,再利用奇异值分解(SVD)得到上述频带重构信号所组成矩阵的奇异值σi(i=1,2,…,6),实现岩体微震信号的特征提取。进而对用沙坝矿120个岩体破裂和120个爆破振动信号展开FSWT-SVD分析,最后利用BP神经网络对奇异值矩阵进行分类训练和预测。结果表明:(1)岩体破裂信号与爆破振动信号的奇异值σ1相差最大,σ2、σ4、σ5和σ6相差较大,而σ3差异不明显,且当σ1=8作为单一奇异值法识别分界值时效果最优,准确率达到了86.67%;(2)BP神经网络法分类识别结果较LR法、Bayes法和Fisher法优,SVD提取特征识别效果较能量比和相关系数优,FSWT重构矩阵提取的特征信息优于DWT重构矩阵提取的特征信息,且基于FSWT-SVD的BP法分类识别准确率达到了91%。综上知,基于FSWT-SVD的BP神经网络模型为岩体破裂与爆破信号特征提取和模式识别提供了一种新方法。 相似文献
7.
带通滤波器参数(中心频率和带宽)选取是共振解调的关键,针对快速峭度图找寻的中心频率偏大、带宽过宽的问题,提出Infogram(信息图)用于确定滤波器参数;并利用变分模态分解(Variational Mode Decomoposition,VMD)预先对信号进行重构,以减少噪声对信息图的影响,增强其应用效果。对轴承故障振动信号进行变分模态分解得到有限个模态分量,根据模态选取准则确定包含故障信息较多的模态分量进行信号重构,再应用信息图确定最佳共振频带的中心频率和带宽,并对重构信号进行带通滤波和包络谱分析,识别轴承故障特征频率。仿真分析和轴承外圈模拟故障试验验证了该方法的有效性。 相似文献
8.
为了准确提取强噪声背景下较微弱的轴承故障特征信息,结合均相经验模态分解(uniform phase empirical mode decomposition, UPEMD)和最大相关峭度解卷积方法(maximum correlated kurtosis deconvolution, MCKD)的优势,提出了一种自适应UPEMD-MCKD轴承故障特征提取方法。该方法将样本熵和峭度指标相结合构建最小熵峭比,采用遗传算法对最小熵峭比的最小值进行搜索,以确定移位数、滤波器长度和周期的最佳参数组合。经均相模态分解方法预处理的含噪信号通过相关性计算选取有效分量进行信号重构,重构信号借助最佳参数组合下的MCKD算法提取故障特征。内圈故障和外圈故障的实例分析表明,所提方法借助UPEMD的噪声抑制能力和最小熵峭比的参数组合寻优评价能力,能够从故障信号中有效的提取出微弱的故障特征。 相似文献
9.
通过进行带机匣测点的滚动轴承故障模拟实验,获取滚动轴承在故障状态条件下,轴承座测点和机匣测点的振动数据。分析结果显示,相对于轴承座,机匣上的振动信号成分复杂,轴承故障特征不明显,直接进行包络解调无法提取故障特征。通过奇异值分解(singular value decomposition,SVD),差分谱中各峰值处奇异值可以表征不同成分的信号。当轴承故障信号微弱时,第一个峰值处的奇异值重构信号往往代表转频及其调制信号分量,选取该靠后峰值处的奇异值进行信号重构可以有效提取轴承故障特征信号。研究内容为实际基于机匣测点信号的航空发动机滚动轴承故障特征提取提供了一种新的方法。 相似文献
10.
为实现转子系统轴心轨迹的快速提纯,提出一种改进的奇异值分解(improved singular value decomposition,ISVD)算法。首先,构建一种奇异值差异比(singular value difference ratio,SVDR)的评判指标来确定矩阵行数,对Hankel矩阵的结构进行优化;其次,利用奇异值与频率的数量关系筛选有效分量,对有效分量进行重构得到特征信号;然后,将降噪提纯后的特征信号合成轴心轨迹,实现轴心轨迹的提纯;最后,利用仿真和实测信号对所提方法进行分析。试验结果表明,与最大维数法相比,在SVDR确定的矩阵结构下,奇异值分解的降噪性能保持不变,但分解的时间缩短了90.18%,提高了计算效率。 相似文献
11.
李余兴李亚安陈晓蔚婧 《振动与冲击》2018,(23):213-218
为了有效提取舰船辐射噪声的频率特征,提出一种基于变分模态分解(VMD)和中心频率的舰船辐射噪声特征提取方法。采用VMD方法将三类舰船辐射噪声分解为一组有限带宽固有模态函数(IMF),计算各阶IMF强度,选取能量较大的IMF作为研究对象,以最强IMF中心频率及能量较大的多个IMF中心频率作为特征参数对三类舰船辐射噪声进行特征提取;针对舰船辐射噪声频率特征提取难且不精准确的问题,采用VMD方法可以准确提取IMF中心频率,实现舰船辐射噪声的特征提取。通过数字仿真和实际舰船辐射噪声信号实验分析,并与基于集合经验模态分解(EEMD)的中心频率及高低频能量差方法进行比较,结果表明该方法可以有效提取舰船辐射噪声中心频率,并实现不同类别舰船的分类识别。 相似文献
12.
13.
针对变分模态分解(Variational Mode Decomposition,VMD)的参数需事先人为确定的问题以及如何选取包含故障特征信息的本征模态分量(Intrinsic Mode Function,IMF)的问题,提出了基于信息熵的参数确定方法和基于信息熵的IMF选取方法。该方法首先对原始故障信号进行变分模态分解,通过信息熵最小值原则对其参数进行优化,获得既定的若干IMF分量;在优化参数时获得信息熵最小值所在的IMF,选取其为有效IMF分量进行包络解调分析,提取轴承故障特征频率。通过轴承仿真信号和实际数据分析,表明该方法能够提取滚动轴承早期故障信号的微弱特征,并实现故障的准确判别。 相似文献
14.
行波型超声电机摩擦材料局部剥落故障直接影响电机输出性能,并加速电机失效;针对故障信息易受噪声干扰,尤其故障初期特征难以提取的问题。将孤极电压信号作为处理对象,提出了一种基于局部特征尺度分解(local characteristic-scale decomposition,LCD)与Teager能量算子相结合的故障特征提取方法:首先,对原始信号样本进行LCD得到不同内禀尺度分量,并通过自相关分析对各分量进行重构,实现降噪预处理;其次,利用Teager能量算子对重构信号低频段所包含的故障信息进行放大;最后,筛选低频段故障频率成分,提出了以幅值和频率信息为基础的故障特征计算方法。试验结果表明,该方法可有效表征行波型超声电机摩擦材料局部剥落的扩增趋势,并具备一定噪声背景下的适用性。 相似文献
15.
夏均忠赵磊白云川于明奇汪治安 《振动与冲击》2017,(20):78-83
针对滚动轴承早期故障特征非常微弱,易受随机噪声和其他信号干扰而难以提取等现象,提出了用最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)和变分模态分解(Variational Mode Decomposition,VMD)相结合的方法提取滚动轴承故障特征。首先用MCKD进行信号增强,然后利用VMD得到一系列模态,应用互相关系数和峭度准则筛选包含故障信息较为丰富的模态进行重构降噪,最后对重构信号进行包络解调提取故障特征。通过仿真分析和轴承故障模拟实验验证了该方法的有效性,可以精确地分离轴承故障振动信号的不同频率成分。 相似文献
16.
戚晓利叶绪丹蔡江林郑近德潘紫微张兴权 《振动与冲击》2018,(23):133-140
提出了一种基于变分模态分解(VMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先利用VMD算法分解圆柱滚子轴承不同运行状态下的振动信号,通过求取瞬时频率均值并绘制特征曲线筛选出与原始信号最为相关的几个分量;然后,提取有效模态分量的时域指标和小波包频带分解能量所构成的频域指标,两者结合初步提取高维故障特征后,再应用LTSA对故障特征进行二次提取;最后输入到K-means分类器进行故障类型识别;通过对圆柱滚子轴承故障诊断的对比实验分析,发现:(1)与时频特征+LTSA、EMD+LTSA特征提取方法相比,VMD+LTSA方法在分类效果和识别精度上更具优势;(2) LTSA算法相比较于PCA、LPP、LE、ISOMAP和LLE这5种算法,其降维后的特征故障敏感性最好。研究结果表明所提出的方法在圆柱滚子轴承故障诊断方面具有一定的优越性。 相似文献
17.
在总体平均经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)降噪过程中,对本征模态分量(Intrinsic Mode Function,IMF)的有效处理一直是影响降噪效果的关键。为此,提出一种基于改进EEMD的去噪方法。基于"3σ"法则和奇异值分解(Singular Value Decomposition,SVD)提取第一个IMF分量中有用信号细节。利用连续均方误差准则对剩余IMF分量进行高低频区分,分别使用SVD和S-G算法提取高低频分量的有用信号,可以有效避免了高频部分有用信号的流失,同时剔除低频分量中的部分噪声,克服了EEMD去噪时IMFs难以有效处理的不足。为了验证该方法的有效性,进行了数字仿真与双势阱混沌振动试验,结果表明,该方法的降噪效果优于小波加权和EEMD去噪方法。 相似文献
18.
19.
任海军韦冲谭志强罗亮丁显飞 《振动与冲击》2023,(13):199-207
针对滚动轴承振动信号中混入噪声的问题,设计一种自适应白噪声完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)结合改进自适应小波阈值(improved adaptive wavelet threshold,IAWT)的联合降噪法。使用CEEMDAN对信号进行模态分解得到本征模态函数(intrinsic mode functions,IMFs);将得到的IMFs与原信号进行相关性分析识别有效分量;针对小波阈值(wavelet threshold,WT)降噪算法不能自适应选取小波基和分解层数以及阈值函数存在缺陷的问题,设计了IAWT算法,利用IAWT算法过滤IMFs中的噪声;将处理后的IMFs进行信号重构。利用设计的联合降噪算法对仿真信号和试验台信号处理可知,相比于WT,使用IAWT处理后的信号信噪比提高了约0.5 dB,与原信号的相关系数提高了约0.03,均方根误差降低了约0.01;将设计的方法与CEEMDAN-WT等方法对比可知,经处理后的信号信噪比至少提高了1.37 dB,且信号特征保存完好。 相似文献
20.
奇异值反映了信号中有用信号和噪声的能量分布情况,通过奇异值分解可以将隐含在噪声中的特征信号提取出来。本文提出了在强背景噪声中基于奇异值分解的特征提取方法。研究发现,随着信号信噪比的降低,奇异值的分布趋于直线,特征信号难以分离和提取。通过增加奇异值分解阶次,可以使反映噪声能量的奇异值的分布范围扩大,使得噪声的能量相对分散,凸显出了反映有用信号能量的奇异值,从而有利于特征信号的提取。仿真试验和故障分析实例都验证了该方法的可行性。 相似文献