首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
在Gleeble-3500热力模拟机上对铸态42Cr Mo中碳低合金钢进行热压缩实验,利用金相显微镜(OM)、扫描电镜(SEM)以及电子背散射衍射(EBSD)技术分析热变形和880℃/2 h正火后的组织与微织构。实验结果表明:变形条件为1000℃/0.1 s-1时,在形变带和三叉晶界处新生再结晶晶粒,平均晶粒直径小;沿着001//ND分布旋转立方织构和立方织构;880℃/2 h正火过程中晶粒发生长大,晶粒内弥散分布碳化物颗粒,主要发生回复和静态再结晶,织构类型为立方织构和高斯织构。在1100℃/0.1 s-1条件下,晶粒尺寸较大,组织均匀,再结晶充分,大角度晶界占三分之二;织构组态为{001}110织构和沿着ξ-取向线的{110}112织构;正火后碳化物含量增加,珠光体片层间距减小,组织演变机制为高温回复与亚动态再结晶,织构类型表现为{110}112取向密度减小,旋转立方织构取向密度增大。  相似文献   

2.
采用热力模拟实验和电子背散射衍射(EBSD)等测试方法,研究温度为350、420℃和应变速率为0.1 s-1条件下新型Al-Zn-Mg-Cu超高强铝合金轴对称热压缩变形以及400℃、1 h退火微观组织和织构的演变。结果表明:在350℃条件下进行80%的压缩变形过程中微观组织的演变机理是动态回复和大应变几何动态再结晶;主要织构是沿着α取向线分布的黄铜织构{110}112和少量的Goss{110}001织构;退火过程中发生静态回复和程度较小的静态再结晶,出现旋转立方织构{100}011,黄铜织构Brass{110}112沿着α取向线向Goss织构{110}001转变;420℃进行80%压缩变形的微观晶粒组织较均匀,细小的再结晶晶粒分布在变形剧烈的晶界或三角晶界处,织构类型为旋转立方织构{100}011;退火过程中发生亚动态再结晶和晶粒长大,该过程中旋转立方织构{100}011减弱,并出现黄铜织构{110}112。  相似文献   

3.
采用热力模拟平面压缩实验和电子背散射衍射(EBSD)组织分析测试方法,研究了新型Al-Zn-Mg-Cu高强铝合金热压缩变形以及退火微观组织和织构。结果表明,在变形温度为350℃,应变速率为0.1 s~(-1)的条件下,合金微观组织演变机理为动态回复和大应变几何动态再结晶,出现旋转立方织构{001}110和黄铜织构{111}110,分别沿着α-取向线和β-取向线分布;退火后旋转立方织构减少,黄铜织构增多,旋转立方织构沿着α-取向线向黄铜织构转变。在变形温度为420℃,应变速率为0.1 s~(-1)的条件下,合金变形组织较均匀,再结晶晶粒分布在变形剧烈的晶界或三角晶界处,出现的织构种类主要有旋转立方织构{110}110、黄铜型{011}211织构;退火过程中发生亚动态再结晶,旋转立方织构强度增强,黄铜型{011}211织构有向高斯织构方向移动的趋势。  相似文献   

4.
利用背散射衍射技术(EBSD),在一段式840 ℃不同时间脱碳退火条件下,研究了基于CSP工艺取向硅钢初次再结晶过程中的组织和结构变化。结果表明,在初次再结晶退火时间为4 min时织构类型较多,分别为{332}<`533>、{554}<225>、{111}<110> 、{001}<100>、 {111}<112>、{001}<110>、{110}<001>、{110}<110> 、 {112}<110>、{110}<112>、{112}<1`10>、{012}<001>和{111}<231>等。当初次再结晶退火时间延长为5 min时, {111}<112>取向晶粒数量明显增多,而{332}<`533>和{012}<001>取向晶粒比例下降。同时Σ3、Σ5和Σ9晶界比例升高,小角度晶界比例较少,而大角度晶界比例较多,这将有助于在二次再结晶退火时发生高斯织构。继续延长退火时间到6 min以后,Σ3、Σ5和Σ9晶界比例下降,小角度晶界比例提高,此时再结晶晶粒长大。  相似文献   

5.
利用光学显微镜、X射线衍射仪和EBSD研究了初次再结晶退火温度对低温Hi-B钢组织、织构和晶界特征的影响。结果表明,初次再结晶退火温度直接影响低温Hi-B钢的初次再结晶的组织均匀性和晶粒平均尺寸,随着退火温度的提高,初次再结晶组织的晶粒平均尺寸从15.2μm增加到26.7μm, 820℃退火的初次再结晶组织均匀性最好。初次再结晶主要织构类型为γ织构、α织构、{001}<120>织构和{114}<481>织构,退火温度880℃时,{001}<120>织构强度明显增加。随着退火温度的提高,Goss晶粒数量减少,{114}<481>组分的面积分数先减少后增加,而{111}<112>组分的面积分数在退火温度升高到840℃后开始减少。退火温度为800℃时,{110}<001>取向晶粒与相邻晶粒的取向差为20°~45°的比例最高,为89.2%。不同退火温度下,{110}<001>取向晶粒周围的CSL晶界分布情况变化很大。  相似文献   

6.
喻春明  张继明  党波  张毅 《金属热处理》2021,46(12):204-208
采用电子背散射衍射(EBSD)对不同轧制和热处理态的高磁感取向硅钢的重合位置点阵(CSL)晶界和织构进行了研究。结果表明,热轧态取向硅钢截面织构呈层状分布,表层主要为{110}<001>Goss织构,1/4厚度主要为{001}<110>立方织构、{112}<111>铜型织构和{110}<001>Goss织构,而心部则形成较强的{112}<111>铜型织构、{111}<110>形变织构和{110}<001>Goss织构;常化处理后截面织构梯度变化不明显,但中心位置{112}<111>织构向{110}<001>Goss织构转变。冷轧退火态主要织构为{110}<001>Goss织构、{112}<111>织构和{111}<110>形变织构。二次再结晶后,则生成强烈的{110}<001>Goss织构。随着织构的变化,CSL晶界也发生了明显的转变。热轧态CSL重位晶界中∑3~∑29均有出现,但比例较低;常化处理后CSL重位晶界比例增加,冷轧退火后CSL晶界比例大幅提高,特别是∑3、∑7、∑9和∑15等晶界;二次再结晶后,由于CSL晶界发生了转化,CSL晶界类型减少,∑3、∑13等晶界比例增加,∑9晶界消失。  相似文献   

7.
利用金相显微镜和EBSD技术分析研究了Fe-3.2%Si合金二次冷轧织构、(100)[001]立方取向晶粒形核、初次再结晶以及二次再结晶后立方织构的形成。结果表明,二次冷轧之后的织构主要为{111}<112>和{111}<011>,并存在少量的{112}<110>,同时在变形晶粒内部存在有接近{100}<001>取向的微区。冷变形晶粒内部各微区取向连续变化,并且逐渐向近立方取向靠近。冷变形晶粒内部立方取向的微区作为形核的核心,在退火过程中利用(100)晶粒低表面能和γ→α相变最终发展成为具有集中立方织构的柱状晶组织。  相似文献   

8.
试验研究了无取向电工钢50W350在热轧、常化、冷轧和退火过程中的组织及织构演变。结果表明,热轧板组织分层明显,表层是细小的等轴晶,次表层是形变组织与等轴晶的混合组织,芯部是拉长的纤维组织;表层主要为(011)和(112)面织构组分,芯部主要为{001}100立方织构、{001}110旋转立方织构。常化板组织在厚度方向上与热轧板类似,各层平均晶粒尺寸较热轧板均增大,常化板表层主要为{112}110织构,芯部主要为{112}110织构和{001}110旋转立方织构。冷轧板为沿着轧制方向伸长的纤维组织,退火板为再结晶组织,平均晶粒尺寸为100. 84μm,主要为{001}100立方织构。  相似文献   

9.
通过对湿H2气氛下,相同退火温度、不同退火时间的CGO硅钢初次再结晶样品进行金相组织观察,并进行了EBSD微观织构分析,研究了CGO硅钢初次再结晶过程中的组织及再结晶织构演变行为。结果表明,在湿H2气氛下,820℃保温,CGO硅钢初次再结晶过程约在120 s时完成。随着退火时间的延长,γ面上{111}<112>织构含量逐渐减少,{111}<110>织构先减少后增多,随着再结晶的完成,部分{111}<112>取向晶粒向高斯{110}<001>取向转化的同时,也向{111}<110>取向转化,高斯{110}<001>织构含量逐渐增多。高斯取向晶粒较多是由{111}<112>取向晶粒转化而来,同时也证明了CGO硅钢高斯取向晶粒的二次再结晶异常长大生长机制为择优形核。  相似文献   

10.
采用EBSD分析方法,对CSP试验钢冷轧板退火过程中组织转变和再结晶织构的演变进行分析。结果表明,试验用钢的再结晶过程属定向形核,冷轧基体织构主要是成条状的{111}<110>、{111}<112>和{001}<110>取向。新的再结晶晶粒主要是{111}<112>和{111}<110>取向,且两种取向相互生成。在再结晶温度区间有利于形成{111}<110>和{111}<112>取向,在晶粒长大阶段会生成大量的对深冲性能无明显影响的{112}<110>取向转变。因此,控制再结晶温度区间内形成的{111}取向稳定存在而不发生转变,将有利于提高材料的深冲性能。  相似文献   

11.
采用光学显微镜、X射线衍射仪及扫描电镜对含稀土无取向硅钢整个生产流程中的显微组织及织构演变进行研究。结果表明,热轧板在厚度方向上有显著的分层,即表层的再结晶层、过渡层、中间层的变形组织层,其织构主要包含铜型、黄铜型织构;正火后晶粒发生了完全再结晶,织构类型相对热轧基本无变化,但强度减弱;两次冷轧后的组织均为纤维组织,形成了以α、γ线性织构为主的织构类型,还出现了强度较高的反高斯织构如{001}<110>、{112}<110>、{111}<110>;脱碳退火后发生部分再结晶,织构相对于冷轧态α、γ线性织构强度均减小;在高温退火阶段晶粒发生再结晶,存在以{111}<112>、{111}<110>为主的γ织构,以及{100}<001>织构。  相似文献   

12.
以实验室模拟CSP连铸连轧工艺制备的热轧硅钢为基板,通过实验室常化、冷轧和初次再结晶退火实验,采用XRD和EBSD技术对样品从热轧到初次再结晶阶段的织构演变进行了研究。结果表明:GOSS晶粒起源于热轧的次表层,沿着次表层到中心层逐渐降低,热轧板中心层主要为{001}110织构。一次冷轧后,次表层存在强的{001}110和{112}110织构;1/4层存在强的{001}110和{112}110以及较强的{111}112织构;中心层则只存在强的{001}110织构。初次再结晶后,硅钢形成了强点{111}112织构的γ织构,GOSS织构再次出现,且分布在{111}112织构周围。GOSS晶粒周围以35°~55°大角度晶界为主,同时还有很高的Σ3和Σ5重合位置点阵。  相似文献   

13.
采用EBSD微取向分析方法,通过分析高纯铝箔冷轧后退火的再结晶初期立方取向晶核的形成过程,以及立方取向晶粒的长大行为,探讨了异步轧制高纯铝箔立方织构形成的微观过程。结果表明,异步轧制的样品中产生较强的C织构{112}111和旋转立方织构{001}110。立方亚晶优先在C取向形变基体内形核并长大,定向形核机制为主要因素。旋转立方织构有利于异步轧制高纯铝箔立方织构{001}100的形成和发展。  相似文献   

14.
通过显微硬度测试、金相观察、EBSD和透射电镜观察等手段研究T83态2099铝锂合金挤压型材FSW焊缝的微观组织和硬度分布。结果表明:焊缝区的硬度分布呈W型,热机械影响区的硬度最低。基材呈部分再结晶组织,主要析出相为T1相和δ′相,存在{112}<111>铜型、S织构和立方织构。焊接区域的晶粒尺寸均小于基材,且该区域在焊接过程中基材的原有析出相发生溶解后重新析出细小的δ′相。焊核区发生动态再结晶,存在大量旋转立方织构。热机械影响区和热影响区分别以{112}<110>织构和{112}<111>铜型织构为主,且都存在较弱的{001}<120>再结晶织构。  相似文献   

15.
采用单辊甩带法制备了厚度为0.03 mm的6.5%Si极薄带,并在真空炉中进行了880 ℃和920 ℃的退火处理。利用XRD和EBSD研究了其在退火后的宏观和微观织构演变规律。结果表明:经单辊甩带制得的6.5%Si极薄带织构主要由{001}<100>立方织构、{110}<001> Goss织构和{112}<111>织构组成。随着退火温度的升高,λ纤维仍占主导地位,且晶粒尺寸逐渐增大。特别是在920 ℃退火时,{001}<120>和{001}<100>晶粒的尺寸优势逐渐增大,不利织构{111}<110>和{111}<112>逐渐减弱,且最终的磁感应强度B50=1.644 T,铁损耗P10/400=5.896 W/kg。  相似文献   

16.
研究了取向硅钢在初次再结晶过程中的组织和结构变化,包括晶粒长大情况、取向差、重合位置点阵(CSL)及织构的变化。研究表明,820℃盐浴再结晶退火3 s时即完成再结晶,随即发生晶粒长大。在初次再结晶的开始阶段,主要织构是{111}112、{100}110和弱的高斯织构;随着退火时间增加,{100}110织构和高斯织构逐渐减弱,{111}112织构先增强后减弱,并向{111}110和{111}231转化,退火3 min以后出现的{012}001织构是一种促进二次再结晶发展并最终有利于提高二次再结晶磁感和降低铁损的织构。退火时间增加到3 min以后,CSL的∑3晶界比例增加。退火时间增加到30 min时,CSL的∑1晶界比例增加,同时,小角度晶界比例提高,大角度晶界减少。  相似文献   

17.
热轧变形对TB-13合金组织和织构的影响   总被引:1,自引:0,他引:1  
采用光学显微镜和X射线衍射仪分析TB-13合金在不同热轧变形条件下组织和织构的演变规律。结果表明:TB-13合金在变形量小于50%的热轧过程中只发生动态回复,当变形量增加到59%时,该合金发生动态再结晶,且随着变形量的增加,动态再结晶程度逐渐增大,细小的再结晶亚晶粒逐渐取代原始等轴状β晶粒从而使组织细化,动态再结晶是该合金热轧过程中主要的细化机制。同时,热轧变形使得该合金形成以旋转立方取向{001}110织构和Goss取向{110}001织构为主的多种织构,且随着变形量的增大,晶粒取向由Goss取向向旋转立方取向转移。  相似文献   

18.
冷轧板再结晶退火中组织和织构演变的研究   总被引:2,自引:1,他引:2  
薄板坯连铸连轧(CSP)热轧板料经热处理来适当调整组织后进行冷轧及退火,并运用电子背散射衍射(EBSD)技术研究了再结晶退火中组织和织构的演变.结果表明:发生再结晶的温度范围是530℃~590℃,590℃为完全再结晶温度;再结晶发生时冷轧变形基体和新晶粒取向的晶界角度差大约为25°~55°;{111}〈110〉、{111}〈112〉取向在再结晶初期和中期发生很大的变化,而{001}〈110〉、{112}〈110〉取向在再结晶后期才发生很大的变化;EBSD检测的结果分析可得{001}〈110〉、{112}〈110〉、{111}面取向储存的变形能依次增加.  相似文献   

19.
使用EBSD和XRD技术研究了1.3%Si无取向硅钢在不同退火温度条件下的微观组织、宏观织构和微观取向。分析了退火温度对此成分体系无取向硅钢再结晶组织和织构的影响;讨论了退火温度与无取向硅钢成品板磁性能的关系。实验结果表明:无取向硅钢的退火温度对其再结晶组织和成品板铁损值有影响,随着退火温度的上升,再结晶晶粒平均尺寸增大且铁损值下降。γ纤维织构是再结晶织构中的优势组分,高斯{110}100织构强度也较高。退火温度对再结晶织构也有影响,随着退火温度上升,γ织构的含量不断上升,其中{111}121织构强度高于{111}110织构强度;退火温度的上升降低了立方{100}100织构和旋转立方{100}110织构但增加了高斯{110}100织构的强度,高斯织构的强度在870℃时达8.8。高斯取向晶粒主要在{111}121取向晶粒附近出现,旋转立方取向晶粒主要出现{111}110取向晶粒附近。由于{111}面织构强度增加和立方织构、旋转立方织构强度的降低,随着退火温度的上升,无取向硅钢的磁感应强度下降。  相似文献   

20.
利用工业试验和OM、SEM和EBSD等系统地研究了830 ℃和860 ℃终轧温度下50W600无取向硅钢组织结构的演变规律及成品电磁性能。结果表明,提高终轧温度有利于促进热轧板特别是其心部的再结晶和晶粒长大,促进退火冷轧板的晶粒长大。50W600无取向硅钢在热轧-冷轧-退火过程中的织构演变规律主要为高斯织构{110}<001>→{112}<110>、{001}<110>和{111}面纤维织构→{111}面纤维织构。终轧温度从830 ℃提高到860 ℃,一方面减弱了热轧板中的{111}面纤维织构组分,另一方面增强了冷轧板中的{111}面纤维织构组分并减弱了其{001}<110>织构组分,最终促进退火冷轧板中对磁性有害的{111}面纤维织构组分减弱和对磁性有利的{001}<110>织构组分增强。提高终轧温度有利于无取向硅钢的铁损降低和磁感应强度提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号