首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse embryonic stem (ES) cells, which are continuously growing cell lines, have a pluripotent ability to differentiate into various cell lineages in vitro including neurons. We investigated the effects of chick dorsal root ganglion (DRG) conditioned medium (CM) and nerve growth factor (NGF) on the directed differentiation of ES cells into neurons. Because DRGs from 8-day-old chick embryos are often used in bioassays of neurotrophic factors, DRGs may release soluble factors that can induce ES cell differentiation into neurons in a culture broth. When cultivated in a Dulbecco's modified Eagle's medium (DMEM)/F-12K medium containing DRG-CM or NGF, the ES cell colonies clearly showed neurite outgrowths. Of particular significance, the immunofluorescence analysis of ES cell colonies using an anti-betaIII-tubulin antibody indicated that the addition of DRG-CM effectively promoted the differentiation of ES cells into neurons. We confirmed the effect of DRG-CM addition on ES cell differentiation into neurons via neuronal stem cells by the immunofluorescence analysis of ES cell colonies. Thus, DRG-CM appeared to effectively promote ES cell differentiation into neurons.  相似文献   

2.
3.
Conventionally, embryonic stem (ES) cells are cultured on a cell layer of mouse embryonic fibroblasts (MEFs) as feeder cells to support undifferentiated growth of ES cells. In this study, cell–cell interactions between mouse ES and feeder cells were artificially engineered via an epithelial cell adhesion molecule, E-cadherin, whose expression is considerable in ES cells. Mouse mesenchymal STO and NIH3T3 cells that were genetically engineered to express E-cadherin were used in ES cell cultures as feeder cells. ES cells cultured on the E-cadherin-expressing feeder cells maintained the expression of stem cell markers, alkaline phosphatase (AP), Oct3/4, Nanog and Sox2, and the efficiency of AP-positive colony formation was comparable to MEFs, and much better than parental STO and NIH3T3 cells. Furthermore, ES cells maintained on the E-cadherin-expressing feeder cells possessed the ability to differentiate into the three germ layers both in vitro and in vivo. The results indicated that E-cadherin expression in feeder cells could improve the performance of feeder cells, which may be further applicable to create new artificial feeder cell lines.  相似文献   

4.
5.
Embryonic stem (ES) cells are a type of pluripotent stem cell line isolated from the inner cell mass of blastocysts and characterized by an almost unlimited self-renewal capacity and differentiation potential in vitro into multiple cell lineages. Therefore the use of ES cells has recently received much attention as a novel cell source for various hybrid artificial organs. To use ES cells, it is necessary to be able to produce functional matured cells from ES cells in large quantities. In this study, we applied polyurethane foam (PUF)/spheroid culture, which enables spontaneous spheroid formation and mass cultivation of cultured cells, to mouse ES cells for hepatic differentiation. Mouse ES cells spontaneously formed spherical multicellular aggregates (spheroids) in the pores of the PUF within 1 d. To induce hepatic differentiation, specific growth factors were added to the culture medium. Mouse ES cells proliferated by day 20, and high cell density (about 1.0 x 10(8) cells/cm(3)-PUF) was achieved. Differentiating ES cells expressed endodermal-specific genes, such as alpha-fetoprotein, albumin and tryptophan 2,3-dioxygenase. The activity of ammonia removal of mouse ES cells per unit volume of the module was detected by day 21 and increased with culture time. Maximum expression levels were comparable to those of primary mouse hepatocytes. Mouse ES cells could express liver-specific functions at high level because of the high cell density culture and hepatic differentiation. These results suggest that the PUF/spheroid culture method could be useful to develop mass differentiation cultures.  相似文献   

6.
Oligodendrocytes are the myelinating cells of the central nervous system (CNS), and defects in these cells can result in the loss of CNS functions. Although oligodendrocyte progenitor cells transplantation therapy is an effective cure for such symptoms, there is no readily available source of these cells. Recent studies have described the generation of induced pluripotent stem cells (iPS cells) from somatic cells, leading to anticipation of this technique as a novel therapeutic tool in regenerative medicine. In this study, we evaluated the ability of iPS cells derived from mouse embryonic fibroblasts to differentiate into oligodendrocytes and compared this with the differential ability of mouse embryonic stem cells (ES cells). Experiments using an in vitro oligodendrocyte differentiation protocol that was optimized to ES cells demonstrated that 2.3% of iPS cells differentiated into O4+ oligodendrocytes compared with 24.0% of ES cells. However, the rate of induction of A2B5+ oligodendrocyte precursor cell (OPC) was similar for both iPS-derived cells and ES-derived cells (14.1% and 12.6%, respectively). These findings suggest that some intracellular factors in iPS cells inhibit the terminal differentiation of oligodendrocytes from the OPC stage.  相似文献   

7.
8.
In this study, we cloned mice from ES cells by a post-electrofusion MG132 treatment and improved development of cloned embryos with a sequential cultivation protocol. When 5 microM MG132, a proteasome inhibitor, were used to treat the reconstructed embryos, the capacity of in vitro development, implantation and full-term development were significantly improved. Blastocyst formation rates of the reconstructed embryos from X4 ES cells (F1 strain derived from C57BL/6 x 129sv) and J1 ES cells obtained with or without MG132 treatment were 66.9% and 26.6%, and 66.1% and 34.5% respectively (P < 0.05). A total of 146 two-cell embryos cloned from X4 ES cells with MG132 treatment were transferred to recipients, and five cloned pups (3.4%) were born, of which four survived. When the same numbers of two-cell embryos cloned from X4 ES cells without MG132 treatment were transferred, however, no live-born mice were obtained. When embryos cloned from J1 ES cells without MG132 treatment were cultured in KSOM medium for 54 h followed by culture in CZB medium containing 5.6 mM glucose for 42 h, the blastocyst rate was significantly higher than when they were cultured in KSOM continuously for 96 h (34.5% vs 17.1%). However, sequential cultivation did not improve the development of embryos cloned with MG132 treatment and that of parthenotes. In conclusion, MG132 treatment increased the developmental potential of reconstructed mouse embryos, and sequential cultivation improved development of the embryos cloned by electrofusion without MG132 treatment.  相似文献   

9.
When cultured in suspension without antidifferentiation factors, embryonic stem (ES) cells spontaneously differentiate and form three-dimensional multicellular aggregates called embryoid bodies (EBs). EBs recapitulate many aspects of cell differentiation during early embryogenesis, and play an important role in the differentiation of ES cells into a variety of cell types in vitro. There are several methods for inducing the formation of EBs from ES cells. The three basic methods are liquid suspension culture in bacterial-grade dishes, culture in methylcellulose semisolid media, and culture in hanging drops. Recently, the methods using a round-bottomed 96-well plate and a conical tube are adopted for forming EBs from predetermined numbers of ES cells. For the production of large numbers of EBs, stirred-suspension culture using spinner flasks and bioreactors is performed. Each of these methods has its own peculiarity; thus, the features of formed EBs depending on the method used. Therefore, we should choose an appropriate method for EB formation according to the objective to be attained. In this review, we summarize the studies on in vitro differentiation of ES cells via EB formation and highlight the EB formation methods recently developed including the techniques, devices, and procedures involved.  相似文献   

10.
We previously showed that increasing the cell number of host tetraploid (4n) embryos by aggregating multiple 4n embryos at two to four-cell stages can improve the birthrate of mice from embryonic stem cells (ES mice). In the present study, we assessed whether in vitro aged blastocysts (e.g., E4.5 or E5.5), where their cell number also increased with development, can be used as hosts for generating ES mice. As expected, the cell number of in vitro aged 4n blastocysts increased with development, i.e., 26.5+/-2.4, 49.6+/-8.4, and 84.9+/-20.9 cells for E3.5, E4.5, and E5.5 respectively. Three independent ES cell lines were injected into 4n aged blastocysts, and their developmental ability was compared with that of E3.5 4n blastocysts commonly used for this procedure. We found that the birthrate of ES mice derived from E4.5 blastocysts were comparable with those of mice generated from E3.5 blastocysts. On the other hand, the birthrates decreased when E5.5 blastocysts were used. These results suggest that not only the cell number but also developmental age is important for producing ES mice. We also discuss a comparison of the present findings with those of our previous study, where ES mice were generated using an aggregation method employing the same ES cell lines.  相似文献   

11.
We prepared a rolled sheet of collagen gel with cultured mouse Schwann cells (SCs) as a nerve conduit (a medical device for neurosurgeons to repair an injured peripheral nerve). PC12 cells and dorsal root ganglion (DRG) cells were used as neuronal cells for evaluating the neurite growth-promoting activity of the device. As a control, we compared the rolled device with a rod device. Those neuronal cells inoculated at the terminal part of the rolled device migrated into the central part along the inter-layer space of the collagen gel layer, and then differentiated into neurons, extending many neurites for 3–12 days in culture. Significantly, this migration of neuronal cells into the device and their subsequent neurite growth was not observed in the absence of the SCs. We conclude that our rolled sheet of collagen gel with SCs was well designed and very effective to promote neurite growth, and is a promising candidate for the nerve conduit.  相似文献   

12.
Murine embryonic stem (ES) cells were cultured on a material containing immobilized leukemia inhibitory factor (LIF). To immobilize LIF, we synthesized photoreactive gelatin mixed with LIF and cast the mixture on a polystyrene plate, which was then dried. LIF was immobilized by photoirradiation in the presence or absence of a photo mask. The plate was washed until LIF was no longer released. Murine ES cells were cultured on the immobilized LIF. Activation of STAT3 was maintained on the immobilized LIF for 6 d even after removing soluble LIF. Oct-3/4 was also expressed in the cells cultured on the immobilized LIF. As a result, the mouse ES cells were cultured without differentiating on the immobilized LIF for 6 d. It was possible to culture murine ES cells without adding soluble LIF at each medium change. We conclude that our material containing immobilized LIF might be useful in the culture of murine ES cells.  相似文献   

13.
14.
Microarrays are currently recognized as one of major tools in the assessment of gene expression via cDNA or RNA analysis and are now accepted as a powerful experimental tool for high-throughput screening of a large number of samples, such as cDNA and siRNAs. In this study, we examined the potential of the microarray methodology for high-throughput screening of candidate cells as feeder cells which effectively differentiate embryonic stem (ES) cells to the specific lineage. Cell arrays were prepared by applying three kinds of cells, PA6, human umbilical vein endothelial, and COS-1 cells, to circular spots, 2 mm in diameter, on a glass plate, followed by the application of mouse ES cells to the cell microarray. After 8 d in culture, TuJ1 (neuron-specific class III beta-tubulin) immunocytochemical staining clearly demonstrated that only PA6 cell spots had the capability to induce ES cells to neuronal differentiation. Although this is a model experiment, these findings clearly indicate that the cell microarray will become a powerful tool for high-throughput screening large numbers of candidate feeder cells for specific differentiation.  相似文献   

15.
The recently developed technique of establishing embryonic stem (ES) cell lines from single blastomeres (BTMs) of early mouse and human embryos has created significant interest in this source of ES cells. However, sister BTMs of an early embryo might not have equal competence for the development of different lineages or the derivation of ES cells. Therefore, single BTMs from two- and four-cell embryos of outbred mice were individually placed in sequential cultures to enhance the formation of the inner cell mass (ICM) and the establishment of embryonic outgrowth. The outgrowths were then used for the derivation of ES cell lines. Based on the expression of ICM (Sox2) and trophectoderm (Cdx2) markers, it was determined that ICM marker was lacking in blastocysts derived from 12% of BTMs from two-cell stage and 20% from four-cell stage. Four ES cell lines (5.6%; 4/72) were established ater culture of single BTMs from two-cell embryos, and their pluripotency was demonstrated by their differentiation into neuronal cell types. Our results demonstrate that sister BTMs of an early embryo are not equally competent for ICM marker expression. However, we demonstrated the feasibility of establishing ES cells from a single BTM of outbred mice.  相似文献   

16.
Insulin injection therapy is the principal current treatment of type 1 diabetes. Patients, however, suffer from various complications generated by insufficient control of blood glucose levels over a long period. Therefore, a method which can infuse insulin in response to changes of blood glucose levels is eagerly desired. Transplantation of insulin releasing cells derived from embryonic stem (ES) cells has been expected to be one of promising approaches to realize this requirement. In this study, ES cell progeny which were derived in culture media with/without fetal calf serum contained two distinct kinds of cells immunostained by anti-insulin and anti-C-peptide antibodies. The cytoplasm and nuclei of one type of cell were immunoreactive against antibodies for insulin, while the other kind of cell only had the cytoplasm stained by the anti-insulin antibody. The first cell type was the major population of insulin-positive cells in serum-free medium, while the latter kind of cells was the major population in medium containing serum. Interestingly, the latter insulin-positive cells could be also immunostained by anti-C-peptide antibodies, and was observed even after nine subcultures in medium containing serum. Although there still remain many issues to be addressed in order to definitely demonstrate that insulin-positive cells derived from ES cells to be truly beta cells in the islets, these properties of the obtained cells are believed to promising cells for treatment of type 1 diabetes.  相似文献   

17.
The effects of specific chemical functionalities on the neurite outgrowths of embryonic chick dorsal root ganglia (DRG) neurons and PC12h cells were investigated using a set of chemically functionalized surfaces prepared by self-assembled monolayers (SAMs) of alkanethiolates with R = NH2, COOH, and CH3 on patterned gold surfaces. The numbers of neurons with neurite outgrowths were compared in the course of a two-week cultivation period. Neurons with neurite outgrowths were observed predominantly on a patterned SAM of long-chain alkanethiolates with amino groups. After about two weeks, the neurons detached from the patterned SAM. However, the activity of beta-galactosidase immobilized via a patterned SAM did not decrease over a 13-d period, reflecting the long-term stability of the SAM. Therefore, the neurons became detached upon cell death. These results demonstrate that the patterned SAM of 11-amino-1-undecanethiolate is a scaffold suitable for making cell chips.  相似文献   

18.
Nanoscale magnetic beads coated with nerve growth factor (NGF) allow us to accumulate neurons differentiated from mouse ES cells in a selected area of the culture plate surface using a magnet. Neurons with neurite outgrowths within a particular area expressed TrkA and incorporated beads in the soma.  相似文献   

19.
Epigenetic states of embryonic stem (ES) cells are easily altered by long-term cultivation and lose their developmental potential. To rescue this reduced developmental capacity, nuclear transfer (NT) of ES cells was carried out, and original ES and ES cells from cloned blastocysts (ntES) cells established after NT were compared with in vitro differentiation ability and developmental potential by embryoid body formation and tetraploid aggregation respectively. In the establishment of ntES cell lines, the oocytes fused with the ES cell were activated, and further cultured to cloned blastocysts. When in vitro differentiation ability was examined between original and ntES cell lines derived from ES cells with extensive passages (ES-ep), the day of appearance of simple embryoid body, cystic embryoid body, and spontaneous beating was almost similar. The developmental rates of ES-ep cells, that aggregated with tetraploid embryos to term, ranged from 3 to 6%. Moreover, the majority of live pups died soon after birth. In the ntES cell lines derived from ES-ep cells, developmental rates ranged from 0 to 5%. Those pups also died soon after birth, similar to the ES-ep-derived pups. These results suggest that profound epigenetic modifications of ES cells were retained in the re-established cell lines by NT.  相似文献   

20.
The aim of this paper was to determine whether the genetic background of tetraploid embryos contributed to the survival of mice derived from embryonic stem (ES) cells by tetraploid embryo complementation. Twenty-five newborns were produced by aggregation of hybrid ES cells and tetraploid embryos with different genetic backgrounds. These newborns were entirely derived from ES cells judged by microsatellite DNA (A specific sequence of DNA bases or nucleotides that contains mono, di, tri or tetra repeats) and coat colour phenotype and germline transmission. Fifteen survived to adulthood while seven died of respiratory failure. All newborns were derived from outbred or hybrid tetraploid aggregates and no newborns were from the inbreds. Our results demonstrate that the genetic heterozygosity, fitness of tetraploid embryos and fitness of ES cells are crucial parameters influencing survival of mice derived from ES cells by tetraploid embryo aggregation. In addition, this method represents a simple and efficient procedure for immediate generation of targeted mouse mutants from genetically modified ES cell clones, in contrast to the standard protocol, which involves the production of chimeras and several breeding steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号