首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Lubrication Science》2017,29(6):357-376
Microlubrication is a green machining technique that reduces the amount of cutting fluid during the machining process. Its effect on subsurface microstructural integrity is a very important aspect for the functionality of a machined component, but it is often neglected and requires advanced characterisation techniques. The focus of this study is to investigate the influence of microlubrication using a biodegradable vegetable oil‐based cutting fluid to characterise the subsurface microstructural integrity during end milling of AISI 1018 steel. Vickers microhardness was measured along the cross section of the machined component from the surface edge to inside the bulk, while transmission electron microscopy was conducted inside the subsurface deformation zone to quantify the dislocation densities. It was determined that increased dislocation densities near the workpiece edge resulted in increased microhardness with reduced tool wear. Thus, microlubrication machining is a sustainable green machining process that does not significantly compromise the subsurface integrity of the workpiece material. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
In recent years, machinery and tool technology has been developing rapidly. The accuracy of operations have also become more and more exact. Elsewhere, raw materials have also been honed, hoping to provide more useful properties than previously. Thus, how to find the best way to prolong the life of a tool subjected to hardened material cutting is the target of this research. Three kinds of tool angle of the endmill are used in this research; clearance angle, rake angle, and helical angle. The cutting conditions are the same; we only change the tool angle for all the cases studied. We attempt to discover better tool geometrical angles for the high-speed milling of NAK80 mold steel. The tool wear rate was measured through a toolmaker’s microscope and the roughness of the machined surface was measured by the roughness-measuring instruments after several complete surface layers were removed from the workpiece in the experiment. Also, a noise-mediator was used to detect the level of cutting noise during each surface layer workpiece removal of the high-speed milling process, and different noise levels were then compared with the tool wear rates for identifying noise characteristics in the case of an over-worn tool state. An abductive network was applied to synthesize the data sets measured from the experiments and the prediction models are established for tool-life estimation and over-worn situation alert under various combinations of different tool geometrical angles. Through the identification of tool wear and its related cutting noise, we hope to consequently construct an automatic tool wear monitoring system by noise detection during a high-speed cutting process to judge whether the tool is still good or not, and, so, the cost of milling can be reduced.  相似文献   

3.
H13淬硬模具钢精车过程的数值模拟   总被引:4,自引:0,他引:4  
闫洪  夏巨谌 《中国机械工程》2005,16(11):985-989
采用热力学耦合有限元方法研究了淬硬钢精车过程中切屑形成规律。运用H13 淬硬模具钢流动应力模型进行数值模拟,考查了H13淬硬模具钢精车过程中工艺参数对工件性能和刀具的影响。结果表明:切削速度愈高,进给量愈小,刀具刀尖半径愈大,则工件加工层上的静水拉应力愈小,表面质量愈好; 淬硬钢精车时径向力起主要作用,大于切削力;切削速度愈大,切削力和径向力则愈小,愈有助于改善工件加工层上的表面质量;切削速度、进给量和刀具刀尖圆角半径愈大,工件和刀具温度愈高,愈易导致刀具前刀面扩散磨损和刀具后刀面磨损。研究结论有助于优化H13淬硬模具钢精车过程中工艺参数选择和改进刀具镶片设计。  相似文献   

4.
高强度钢具有优异的机械性能和广阔的应用,但切削加工较为困难,存在加工效率低,加工表面质量差等问题.以AF1410高强度钢为研究对象,应用高速铣削的加工方法,使用涂层硬质合金刀片,对AF1410高强度钢进行了高速铣削实验,研究分析了在高速切削条件下刀具磨损、切削力、切削温度以及已加工表面粗糙度的变化规律.研究发现以TiC...  相似文献   

5.
Milling cutters were evaluated by tool wear, cutting force and vibration. Surface integrity of grinding and milling were investigated by comparing residual stress distributions, metallurgical structure, hardened layer depth and surface roughness. And influence of cutting tool wear on surface integrity was investigated. Experimentations revealed that the preferable surface integrity would be obtained if the proper milling cutter as well as a small wear criterion were adopted to avoid the advent of tempered martensite. The research results pointed out the feasibility of taking milling as the finish machining process instead of grinding in machining hardened steel with high efficiency.  相似文献   

6.
Milling cutters were evaluated by tool wear, cutting force and vibration. Surface integrity of grinding and milling were investigated by comparing residual stress distributions, metallurgical structure, hardened layer depth and surface roughness. And influence of cutting tool wear on surface integrity was investigated. Experimentations revealed that the preferable surface integrity would be obtained if the proper milling cutter as well as a small wear criterion were adopted to avoid the advent of tempered martensite. The research results pointed out the feasibility of taking milling as the finish machining process instead of grinding in machining hardened steel with high efficiency.  相似文献   

7.
Plasma surface engineering is a very promising way to enhance performance of metal cutting tools. The advantage of PVD coatings include increase the tool life, improve the roughness of machined surfaces, increase the cutting speed, etc.

This paper studied some new multiphase materials and multilayer structures of coatings based on TiN and TiC, ZrN, (Ti,Al)N,Al-Si-N. The change of contact conditions on cutting by coated tools, specific features of wear of tools with complicated geometry (like drills), effect of cutting conditions and workpiece materials on tribological behavior of indexable inserts during lathe turning and plain rotary were discussed.  相似文献   

8.
The objective of this paper is to investigate the performance of different categories of hard PVD coatings in terms of friction and tool wear under dry high-speed machining (HSM) conditions. In this study five different categories of commercially available coatings (nano-composite AlTiN/Si3N4, nano-crystalline Al67Ti33N and mono-layered Ti10Al70Cr20N) and experimental nano-multilayered coatings (Ti25Al65Cr10N/BCN and Ti25Al65Cr10N/WN) were studied by machining hardened steel AISI H13 (HRC 50). The coefficients of friction against steel versus temperature were measured. Tool wear and cutting forces were measured in-situ under dry high speed machining conditions. The morphology of the worn tools and the chips collected during cutting were studied using an SEM (Scanning Electron Microscopy) and the EDX (Energy Dispersive X-ray analysis). The cutting temperatures were estimated based on the color of the chips generated during cutting. The comparison among these categories of coatings was conducted based on tool wear, coefficient of friction, cutting forces and chip formation. From this study, it was revealed that the solid self-lubricating layers, automatically formed in the cutting zone under elevated temperatures, play a key role in leading to a significant improvement of tool performance under dry high-speed machining.  相似文献   

9.
车铣加工通过将车刀更换为铣刀,增加铣刀转动自由度,基于工件转动和铣刀转动的合成运动,完成对工件的加工.车铣加工具有断屑更容易、切削温度低、切削力小等优点,即使工件低速旋转,也能实现高速切削.对车铣加工的切削机理进行了分析,具体包括刀具磨损机理、切屑形成机理、工件表面质量、难加工材料切削等.  相似文献   

10.
This paper focused on high-speed milling of Al6063 matrix composites reinforced with high-volume fraction of small-sized SiC particulates and provided systematic experimental study about cutting forces, thin-walled part deformation, surface integrity, and tool wear during high-speed end milling of 65% volume fraction SiCp/Al6063 (Al6063/SiCp/65p) composites in polycrystalline diamond (PCD) tooling. The machined surface morphologies reveal that the cutting mechanism of SiC particulates plays an important role in defect formation mechanisms on the machined surface. In high-speed end milling of Al6063/SiCp/65p composites, the cutting forces are influenced most considerably by axial depth of cut, and thus the axial depth of cut plays a dominant role in the thin-walled parts deformation. Increased milling speed within a certain range contributes to reducing surface roughness. The surface and sub-surface machined using high-speed milling suffered from less damage compared to low-speed milling. The milling speed influence on surface residual stress is associated with milling-induced heat and deformation. Micro-chipping, abrasive wear, graphitization, grain breaking off, and built-up edge are the dominated wear mechanism of PCD tools. Finally, a series of comparative experiments were performed to study the influence of tool nose radius, average diamond grain size, and machining parameters on PCD tool life.  相似文献   

11.
颤振是金属切削加工过程中由于刀具和工件之间相互作用所产生的一种强烈的自激振动现象,会导致切削力幅值增加且发生剧烈波动,进而降低工件表面质量和刀具使用寿命。针对此问题,基于铣削过程稳定性预测分析方法建立多硬度拼接工件的动态铣削系统,对多硬度拼接模具铣削过程稳定性进行深入研究,实现了对拼接模具铣削加工过程颤振稳定域的仿真,进而研究了模态参数对稳定性叶瓣图形状的影响。最后通过时域分析、表面形貌和刀具磨损的研究,综合验证了稳定性预测曲线的精度。研究结果为多硬度拼接模具铣削加工提供理论基础,并设置合理的加工参数来实现金属最大切除率,为大型汽车覆盖件模具铣削加工提供理论依据及技术指导。  相似文献   

12.
Various cutter strategies have been developed during milling freeform surface. Proper selection of the cutter path orientation is extremely important in ensuring high productivity rate, meeting the better quality level, and longer tool life. In this work, finish milling of TC17 alloy has been done using carbide ball nose end mill on an incline workpiece angle of 30°. The influence of cutter path orientation was examined, and the cutting forces, tool life, tool wear, and surface integrity were evaluated. The results indicate that horizontal downward orientation produced the highest cutting forces. Vertical downward orientation provided the best tool life with cut lengths 90–380 % longer than for all other orientations. Flank wear and adhesion wear were the primary wear form and wear mechanisms, respectively. The best surface finish was achieved using an upward orientation, in particular, the vertical upward orientation. Compressive residual stresses were detected on all the machined surfaces, and vertical upward orientation provided the minimum surface compressive residual stress. In the aspect of tool wear reduction and improvement of surface integrity, horizontal upward cutter path orientation was a suitable choice, which provided a tool life of 270 m, surface roughness (R a ) of 1.46 μm, and surface compressive residual stress of ?300 MPa.  相似文献   

13.
本文设计和加工了多硬度拼接凸曲面淬硬钢试件,以替代大型淬硬钢凸模,给出了铣削多硬度拼接凸曲面淬硬钢模具的刀具性能测试实验方案;利用该测试方案,检测出铣刀振动、磨损及加工表面形貌特征,并通过进一步增大每齿进给量测试刀具的使用寿命和安全可靠性,得到铣刀优选方法。结果表明,该方法可有效揭示和评价淬硬钢表面曲率和硬度多变对铣刀切削性能的影响,满足高效、安全稳定切削汽车内板淬硬钢凸模的要求。  相似文献   

14.
This paper studies the impact of a special carbide tool design on the process viability of the face milling of hardened AISI D3 steel (with a hardness of 60 HRC), in terms of surface quality and tool life. Due to the advances in the manufacturing of PVD AlCrN tungsten carbide coated tools, it is possible to use them in the manufacturing of mould and die components. Experimental results show that surface roughness (Ra) values from 0.1 to 0.3 μm can be obtained in the workpiece with an acceptable level of tool life. These outcomes suggest that these tools are suitable for the finishing of hardened steel parts and can compete with other finishing processes. The tool performance is explained after a tool wear characterization, in which two wear zones were distinguished: the region along the cutting edge where the cutting angle (κ) is maximum (κmax) for a given depth of cut, and the zone where the cutting angle is minimum (κ?=?0) that generates the desired surface. An additional machining test run was made to plot the topography of the surface and to measure dimensional variations. Finally, for the parameters optimal selection, frequency histograms of Ra distribution were obtained establishing the relationship between key milling process parameters (Vc and fz), surface roughness and tool wear morphology.  相似文献   

15.
钛合金在铣削过程中受迫振动明显,刀—工接触关系不断变化,加工表面形貌特征参数难以预测,已成为制约加工表面质量进一步提高的瓶颈。针对铣削振动与加工表面形貌的非线性随机变化特性进行了切削钛合金试验,采用高斯过程回归法构建铣削振动作用下的加工表面形貌高斯过程模型。分析刀齿误差和铣削振动对加工表面形貌特征参数的影响规律,为以加工表面质量分布一致性为前提的铣削钛合金工艺设计提供参考依据。  相似文献   

16.
使用PCBN刀具对不同淬硬状态工具钢Cr12MoV进行精密干式硬态车削试验,运用极差法分析切削速度、走刀量、切削深度、试件硬度、刀尖圆弧半径五个因素对工件表面温度影响的显著性,并得到了最优车削参数。试验表明:影响工件表面温度最显著的因素是工件淬火硬度,切削深度与走刀量的影响相当,刀尖圆弧半径的影响最小。  相似文献   

17.
In the present investigation, AA6005 (ISO: AlSiMg) alloy was machined in turning operation with different cutting tools, such as uncoated cemented carbide insert, PVD TiN coated, CVD diamond coated and PCD insert, under dry environment. Effect of cutting speed was studied for each of the cutting tools with regard to the formation of built-up layer (BUL) or built-up edge (BUE). The rake surface of the tools was characterized by optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopic microanalysis. Particular emphasis was given on wear mechanism of PVD TiN coated insert, conventionally used in machining ferrous alloys, during dry turning of AA6005 alloy. It has been observed that increase of cutting speed from 200 m/min to as high as 1000 m/min could not substantially reduce formation of BUL over tool rake surface during dry machining of AA6005 alloy with uncoated or PVD TiN coated cemented carbide inserts. The potential of diamond-based tools in dry machining of aluminium alloy was also studied. Finally, the effect of cutting speed on surface finish of the workpiece machined with different cutting tools was studied during dry turning of AA6005 alloy.  相似文献   

18.
The influence of nanolayer AlTiN/TiN and multilayer nanocomposite TiAlSiN/TiSiN/TiAlN hard coatings on the wear behavior and cutting performance of carbide cutting tools was investigated in face milling of hardened AISI O2 cold work tool steel (∼58 HRC) at dry conditions. Characterization of the coatings was performed using nanoindentation, scratch test, reciprocating multi-pass wear test. The chips forming during cutting process were also analyzed. Results showed that abrasive and oxidation wear are dominant tool failures. The nanolayer AlTiN/TiN coating gives the best adhesion to the substrate, the best wear resistance in machining and thus provides the longest lifetime with carbide inserts.  相似文献   

19.
The objective of this paper is to investigate the performance of different categories of hard PVD coatings in terms of friction and tool wear under dry high-speed machining (HSM) conditions. In this study five different categories of commercially available coatings (nano-composite AlTiN/Si3N4, nano-crystalline Al67Ti33N and mono-layered Ti10Al70Cr20N) and experimental nano-multilayered coatings (Ti25Al65Cr10N/BCN and Ti25Al65Cr10N/WN) were studied by machining hardened steel AISI H13 (HRC 50). The coefficients of friction against steel versus temperature were measured. Tool wear and cutting forces were measured in-situ under dry high speed machining conditions. The morphology of the worn tools and the chips collected during cutting were studied using an SEM (Scanning Electron Microscopy) and the EDX (Energy Dispersive X-ray analysis). The cutting temperatures were estimated based on the color of the chips generated during cutting. The comparison among these categories of coatings was conducted based on tool wear, coefficient of friction, cutting forces and chip formation. From this study, it was revealed that the solid self-lubricating layers, automatically formed in the cutting zone under elevated temperatures, play a key role in leading to a significant improvement of tool performance under dry high-speed machining.  相似文献   

20.
Aluminum alloy is the main structural material of aircraft,launch vehicle,spaceship,and space station and is pro-cessed by milling.However,tool wear and vibration are the bottlenecks in the milling process of aviation aluminum alloy.The machining accuracy and surface quality of aluminum alloy milling depend on the cutting parameters,material mechanical properties,machine tools,and other parameters.In particular,milling force is the crucial factor to determine material removal and workpiece surface integrity.However,establishing the prediction model of milling force is important and difficult because milling force is the result of multiparameter coupling of process system.The research progress of cutting force model is reviewed from three modeling methods:empirical model,finite element simulation,and instantaneous milling force model.The problems of cutting force modeling are also determined.In view of these problems,the future work direction is proposed in the following four aspects:(1)high-speed milling is adopted for the thin-walled structure of large aviation with large cutting depth,which easily produces high residual stress.The residual stress should be analyzed under this particular condition.(2)Multiple factors(e.g.,eccentric swing milling parameters,lubrication conditions,tools,tool and workpiece deformation,and size effect)should be consid-ered comprehensively when modeling instantaneous milling forces,especially for micro milling and complex surface machining.(3)The database of milling force model,including the corresponding workpiece materials,working condi-tion,cutting tools(geometric figures and coatings),and other parameters,should be established.(4)The effect of chatter on the prediction accuracy of milling force cannot be ignored in thin-walled workpiece milling.(5)The cutting force of aviation aluminum alloy milling under the condition of minimum quantity lubrication(mql)and nanofluid mql should be predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号