首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new low temperature crystallization method for poly-Si TFTs was developed: Metal-Induced Lateral Crystallization (MILC). The a-Si film in the channel area of a TFT was laterally crystallized from the source/drain area, on which an ultrathin nickel layer was deposited before annealing. The a-channel poly-Si TFTs fabricated at 500°C by MILC showed a mobility of 121 cm2/V·s, a threshold voltage of 1.2 V, and an on/off current ratio of higher than 106 . These electrical properties are much better than TFTs fabricated by conventional crystallization at 600°C  相似文献   

2.
Inverse staggered polycrystalline silicon (poly-Si) and hydrogenated amorphous silicon (a-Si:H) double structure thin-film transistors (TFT's) are fabricated based on the conventional a-Si:H TFT process on a single glass substrate. After depositing a thin (20 nm) a-Si:H using the plasma CVD technique at 300°C, Ar+ and XeCl (300 mJ/cm2) lasers are irradiated successively, and then a thick a-Si:H (200 nm) and n+ Si layers are deposited again. The field effect mobilities of 10 and 0.5 cm 2/V·s are obtained for the laser annealed poly-Si and the a-Si:H (without annealing) TFT's, respectively  相似文献   

3.
High-mobility p-channel poly-Si TFTs were fabricated using a new low-temperature process (⩽500°C): self-aligned metal-induced lateral crystallization (MILC). With a one-step annealing at 500°C, activation of dopants in source/drain/gate a-Si films as well as the crystallization of channel a-Si films was achieved. The TFTs showed a threshold voltage of -1.7 V, and an on/off current ratio of ~107 without post-hydrogenation. The mobility was measured to be as high as 90 cm2/V·s, which is two to three times higher than that of the poly-Si TFTs fabricated by conventional solid-phase crystallization at around 600°C  相似文献   

4.
Mo-gate n-channel poly-Si thin-film transistors (TFT's) have been fabricated for the first time at a low processing temperature of 260°C. A 500-1000-A-thick a-Si:H was successfully crystallized by XeCl excimer laser (308nm) annealing without heating a glass substrate. TFT's were fabricated in the crystallized Si film. The channel mobility of the TFT was 180cm2/V.s when the a-Si:H was crystallized by annealing with a laser having an energy density of 200 mJ/cm2. This result shows that high-speed silicon devices can be fabricated at a low temperature using XeCl excimer laser annealing.  相似文献   

5.
Electron cyclotron resonance (ECR) plasma thermal oxide has been investigated as a gate insulator for low temperature (⩽600°C) polysilicon thin-film transistors based on solid phase crystallization (SPC) method. The ECR plasma thermal oxide films grown on a polysilicon film has a relatively smooth interface with the polysilicon film when compared with the conventional thermal oxide and it shows good electrical characteristics. The fabricated poly-Si TFT's without plasma hydrogenation exhibit field-effect mobilities of 80 (60) cm2/V·s for n-channel and 69 (48) cm2/V·s for p-channel respectively when using Si2 H6(SiH4) source gas for the deposition of active poly-Si films  相似文献   

6.
High-mobility poly-Si thin-film transistors (TFTs) were fabricated by a novel excimer laser crystallization method based on dual-beam irradiation. The new method can reduce the solidification velocity of the top Si layer by heating the bottom Si layer of the Si/SiO2/Si/glass substrate structure by means of laser irradiation not only from the front side but also from the back side. The grain size of poly-Si film was enlarged up to 2 μm. The field-effect mobilities of the TFT exceeded 380 cm2/V-s for electrons and 100 cm2/V-s for holes  相似文献   

7.
A novel self-aligned polycrystalline silicon (poly-Si) thin-film transistor (TFT) was fabricated using the three layers of poly-Si, silicon-nitride, and thin amorphous silicon. Gate and source/drain silicide formation was carried out simultaneously following silicon nitride and amorphous silicon patterning, enabling the use of only two mask steps for the TFT. The fabricated poly-Si TFT using laser annealed poly-Si exhibited a field-effect mobility of 30.6 cm2/Vs, threshold voltage of 0.5 V, subthreshold slope of 1.9 V/dec., on/off current ratio of ~106, and off-state leakage current of 7.88×10-12 A/μm at the drain voltage of 5 V and gate voltage of -10 V  相似文献   

8.
We show that hydrogenated amorphous silicon thin-film transistors (a-Si:H TFT's) with active layer thickness of 13 nm perform better for display applications than devices with thicker 50-nm active layers. A direct comparison of a-Si:H TFT's fabricated using an i-stopper TFT structure shows that ultrathin active layers significantly improve the device characteristics. For a 5-μm channel length TFT, the linear region (VDS=0.1 V) and saturation region mobilities increase from 0.4 cm2/V·s and 0.7 cm2/V·s for a 50-nm thick active layer a-Si:H device to 0.7 cm2/V·s and 1.2 cm2/V·s for a 13-nm thick active layer a-Si:H layer device fabricated with otherwise identical geometry and processing  相似文献   

9.
We have fabricated a high performance polycrystalline silicon (poly-Si) thin film transistor (TFT) with a silicon-nitride (SiNx ) gate insulator using three stacked layers: very thin laser of hydrogenated amorphous silicon (a-Si:H), SiNx and laser annealed poly-Si. After patterning thin a-Si:H/SiNx layers, gate, and source/drain regions were ion-doped and then Ni layer was deposited. This structure was annealed at 250°C to form a NiSi silicide phase. The low resistive Ni silicides were introduced as gate/source/drain electrodes in order to reduce the process steps. The poly-Si with a grain size of 250 nm and low resistance n+ poly-Si for ohmic contact were introduced to achieve a high performance TFT. The fabricated poly-Si TFT exhibited a field effect mobility of 262 cm2/Vs and a threshold voltage of 1 V  相似文献   

10.
We have developed a low-temperature fabrication process (⩽ 200°C for high-quality polycrystalline Si thin-film transistors (poly-Si TFTs) on flexible stainless-steel foils. The fabrication processes is realized through sputter deposition of thin films, including active-Si and gate-SiO2 films, crystallization of Si films by KrF excimer laser irradiation, and inductively coupled plasma hydrogenation. High-quality n- and p-channel poly-Si TFTs are successfully fabricated without suffering from problems of substrate bending, film ablation, or cracking in films. The resulting n- and p-channel poly-Si TFTs showed mobilities of 106 and 122 cm2/V·s, respectively. This paper describes the deposition and properties of the sputtered Si films and the fabrication process and electrical characteristics of the poly-SiTFTs  相似文献   

11.
The authors have fabricated a new low temperature polycrystalline silicon (poly-Si) thin film transistor (TFT) with silicon nitride (SiN x) ion-stopper and laser annealed poly-Si. The fabricated poly-Si TFT using SiNx as the ion-stopper as well as the gate insulator exhibited a field effect mobility of 110 cm2/Vs, subthreshold voltage of 5.5 V, subthreshold slope of 0.48 V/dec., and on/off current ratio of ~106. Low off-state leakage current of 2.4×10-2 A/μm at the drain voltage of 5 V and the gate voltage of -5 V was achieved  相似文献   

12.
High mobility polycrystalline Si thin-film transistors (poly-Si TFTs) are firstly fabricated on flexible stainless-steel substrates 100 μm thick through low-temperature processes where both active Si and gate SiO2 films are deposited by glow-discharge sputtering and the Si films are crystallized by KrF excimer laser irradiation. The gate SiO2 films are sputter-deposited in oxygen atmosphere from the SiO2 target. Resulting poly-Si TFTs show excellent characteristics of mobility of 106 cm2/V·s and drain current on-off ratio of as high as 1×106. Thus, the poly-Si TFTs are very promising for realizing novel flat panel displays of lightweight and rugged LCDs and LEDs  相似文献   

13.
High-performance low-temperature poly-Si (LTPS) thin-film transistors (TFTs) have been fabricated by excimer laser crystallization (ELC) with a recessed-channel (RC) structure. The TFTs made by this method possessed large longitudinal grains in the channel regions, therefore, they exhibited better electrical characteristics as compared with the conventional ones. An average field-effect mobility above 300 cm2/V-s and on/off current ratio higher than 109 were achieved in these RC-structure devices. In addition, since grain growth could be artificially controlled by this method, the device electrical characteristics were less sensitive to laser energy density variation, and therefore the uniformity of device performance could be improved  相似文献   

14.
Key technologies for fabricating polycrystalline silicon thin film transistors (poly-Si TFTs) at a low temperature are discussed. Hydrogenated amorphous silicon films were crystallized by irradiation of a 30 ns-pulsed XeCl excimer laser. Crystalline grains were smaller than 100 nm. The density of localized trap states in poly-Si films was reduced to 4×1016 cm-3 by plasma hydrogenation only for 30 seconds. Remote plasma chemical vapor deposition (CVD) using mesh electrodes realized a good interface of SiO 2/Si with the interface trap density of 2.0×1010 cm-2 eV-1 at 270°C. Poly-Si TFTs were fabricated at 270°C using laser crystallization, plasma hydrogenation and remote plasma CVD. The carrier mobility was 640 cm2/Vs for n-channel TFTs and 400 cm2/Vs for p-channel TFTs. The threshold voltage was 0.8 V for n-channel TFTs and -1.5 V for p-channel TFTs. The leakage current of n-channel poly-Si TFTs was reduced from 2×10-10 A/μm to 3×10-13 A/μm at the gate voltage of -5 V using an offset gate electrode with an offset length of 1 μm  相似文献   

15.
By optimizing the inductively coupled plasma (ICP) oxidation condition, a thin oxide of 10 nm has been grown at 350°C to achieve excellent gate oxide integrity of low leakage current<5×10-8 A/cm2 (at 8 MV/cm), high breakdown field of 9.3 MV/cm and low interface trap density of 1.5×1011 /eV cm2. The superior performance poly-Si TFTs using such a thin ICP oxide were attained to achieve a high ON current of 110 μA/μm at VD=1 V and VG=5 V and the high electron field effect mobility of 231 cm2/V·S  相似文献   

16.
We fabricated a new top-gate n-type depletion-mode polycrystalline silicon (poly-Si) thin-film transistor (TFT) employing alternating magnetic-field-enhanced rapid thermal annealing. An n+ amorphous silicon (n+ a-Si) layer was deposited to improve the contact resistance between the active Si and source/drain (S/D) metal. The proposed process was almost compatible with the widely used hydrogenated amorphous silicon (a-Si:H) TFT fabrication process. This new process offers better uniformity when compared to the conventional laser-crystallized poly-Si TFT process, because it involves nonlaser crystallization. The poly-Si TFT exhibited a threshold voltage (VTH) of -7.99 V at a drain bias of 0.1 V, a field-effect mobility of 7.14 cm2/V ldr s, a subthreshold swing (S) of 0.68 V/dec, and an ON/OFF current ratio of 107. The diffused phosphorous ions (P+ ions) in the channel reduced the VTH and increased the S value.  相似文献   

17.
The hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFT's) having a field-effect mobility of 1.45 ±0.05 cm2 /V·s and threshold voltage of 2.0±0.2 V have been fabricated from the high deposition-rate plasma-enhanced chemical vapor deposited (PECVD) materials. For this TFT, the deposition rates of a-Si:H and N-rich hydrogenated amorphous silicon nitride (a-SiN1.5 :H) are about 50 and 190 nm/min, respectively. The TFT has a very high ON/OFF-current ratio (of more than 107), sharp subthreshold slope (0.3±0.03 V/decade), and very low source-drain current activation energy (50±5 meV). All these parameters are consistent with a high mobility value obtained for our a-Si:H TFT structures. To our best knowledge, this is the highest field-effect mobility ever reported for an a-Si:H TFT fabricated from high deposition-rate PECVD materials  相似文献   

18.
In this letter, we have studied the inverted staggered thin-film transistor (TFT) using a spin-on-glass (SOG) gate insulator and a low-temperature polycrystalline silicon (poly-Si) by Ni-mediated crystallization of amorphous silicon. The p-channel poly-Si TFT exhibited a field-effect mobility of 48.2 cm2/V ldr s, a threshold voltage of -4.2 V, a gate-voltage swing of 1.2 V/dec, and a minimum off-current of < 4 times 10-13A/ mum at Vds = -0.1 V. Therefore, the gate planarization technology by SOG can be applicable to low-cost large-area poly-Si active-matrix displays.  相似文献   

19.
Hydrogenation of polysilicon (poly-Si) thin film transistors (TFT's) by ion implantation has been systematically studied. Poly-Si TFT performance was dramatically improved by hydrogen ion implantation followed by a forming gas anneal (FGA). The threshold voltage, channel mobility, subthreshold swing, leakage current, and ON/OFF current ratio have been studied as functions of ion implantation dose and FGA temperature. Under the optimized conditions (H+ dose of 5×1015 cm-2 and FGA temperature at 375°C), NMOS poly-Si TFT's fabricated by a low temperature 600°C process have a mobility of ~27 cm 2/V·s, a threshold voltage of ~2 V, a subthreshold swing of ~0.9 V/decade, and an OFF-state leakage current of ~7 pA/μm at VDS=10 V. The avalanche induced kink effect was found to be reduced after hydrogenation  相似文献   

20.
High-performance polycrystalline Si (poly-Si) thin-film transistors (TFTs) were successfully fabricated on a glass substrate below 425°C by introducing defect control process technologies. The defects in the laser crystallized poly-Si films were terminated by an oxygen plasma treatment to the film and the defects at the SiO2 /Si interface were controlled by a gate SiO2 film formation using electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition (PECVD). As a result, high n-channel mobility of 309 cm2V-1s-1, low threshold voltage of 1.12 V and low subthreshold swing of 250 mV/decade were obtained. In addition, it was demonstrated that the defect control process is quite effective to minimize the variation of TFT characteristics  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号