首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The possibility of the diversion of carbon flux from ethanol towards glycerol in Saccharomyces cerevisiae during alcoholic fermentation was investigated. Variations in the glycerol 3-phosphate dehydrogenase (GPDH) level and similar trends for alcohol dehydrogenase (ADH), pyruvate decarboxylase and glycerol-3-phosphatase were found when low and high glycerol-forming wine yeast strains were compared. GPDH is thus a limiting enzyme for glycerol production. Wine yeast strains with modulated GPD1 (encoding one of the two GPDH isoenzymes) expression were constructed and characterized during fermentation on glucose-rich medium. Engineered strains fermented glucose with a strongly modified [glycerol] : [ethanol] ratio. gpd1delta mutants exhibited a 50% decrease in glycerol production and increased ethanol yield. Overexpression of GPD1 on synthetic must (200 g/l glucose) resulted in a substantial increase in glycerol production ( x 4) at the expense of ethanol. Acetaldehyde accumulated through the competitive regeneration of NADH via GPDH. Accumulation of by-products such as pyruvate, acetate, acetoin, 2,3 butane-diol and succinate was observed, with a marked increase in acetoin production.  相似文献   

3.
To prevent the loss of raw material in ethanol production by anaerobic yeast cultures, glycerol formation has to be reduced. In theory, this may be done by providing the yeast with amino acids, since the de novo cell synthesis of amino acids from glucose and ammonia gives rise to a surplus of NADH, which has to be reoxidized by the formation of glycerol. An industrial strain of Saccharomyces cerevisiae was cultivated in batch cultures with different nitrogen sources, i.e., ammonium salt, glutamic acid, and a mixture of amino acids, with 20 g of glucose per liter as the carbon and energy source. The effects of the nitrogen source on metabolite formation, growth, and cell composition were measured. The glycerol yields obtained with glutamic acid (0.17 mol/mol of glucose) or with the mixture of amino acids (0.10 mol/mol) as a nitrogen source were clearly lower than those for ammonium-grown cultures (0.21 mol/mol). In addition, the ethanol yield increased for growth on both glutamic acid (by 9%) and the mixture of amino acids (by 14%). Glutamic acid has a large influence on the formation of products; the production of, for example, alpha-ketoglutaric acid, succinic acid, and acetic acid, increased compared with their production with the other nitrogen sources. Cultures grown on amino acids have a higher specific growth rate (0.52 h-1) than cultures of both ammonium-grown (0.45 h-1) and glutamic acid-grown (0.33 h-1) cells. Although the product yields differed, similar compositions of the cells were attained. The NADH produced in the amino acid, RNA, and extracellular metabolite syntheses was calculated together with the corresponding glycerol formation. The lower-range values of the theoretically calculated yields of glycerol were in good agreement with the experimental yields, which may indicate that the regulation of metabolism succeeds in the most efficient balancing of the redox potential.  相似文献   

4.
Glutamine production with bacterial glutamine synthetase (GS) and the sugar-fermenting system of baker's yeast for ATP regeneration was investigated by determining the product yield obtained with the energy source for ATP regeneration (i.e., glucose) for yeast fermentation. Fructose 1,6-bisphosphate was accumulated temporarily prior to the formation of glutamine in mixtures which consisted of dried yeast cells, GS, their substrate (glucose and glutamate and ammonia), inorganic phosphate, and cofactors. By an increase in the amounts of GS and inorganic phosphate, the amounts of glutamine formed increased to 19 to 54 g/liter, with a yield increase of 69 to 72% based on the energy source (glucose) for ATP regeneration. The analyses of sugar fermentation of the yeast in the glutamine-producing mixtures suggested that the apparent hydrolysis of ATP by a futile cycle(s) at the early stage of glycolysis in the yeast cells reduces the efficiency of ATP utilization. Inorganic phosphate inhibits phosphatase(s) and thus improves glutamine yield. However, the analyses of GS activity in the glutamine-producing mixtures suggested that the higher concentration of inorganic phosphate as well as the limited amount of ATP-ADP caused the low reactivity of GS in the glutamine-producing mixtures. A result suggestive of improved glutamine yield under the conditions with lower concentrations of inorganic phosphate was obtained by using a yeast mutant strain that had low assimilating ability for glycerol and ethanol. In the mutant, the activity of the enzymes involved in gluconeogenesis, especially fructose 1,6-bisphosphatase, was lower than that in the wild-type strain.  相似文献   

5.
The nitrate-tolerant organism Klebsiella oxytoca CECT 4460 tolerates nitrate at concentrations up to 1 M and is used to treat wastewater with high nitrate loads in industrial wastewater treatment plants. We studied the influence of the C source (glycerol or sucrose or both) on the growth rate and the efficiency of nitrate removal under laboratory conditions. With sucrose as the sole C source the maximum specific growth rate was 0.3 h-1, whereas with glycerol it was 0.45 h-1. In batch cultures K. oxytoca cells grown on sucrose or glycerol were able to immediately use sucrose as a sole C source, suggesting that sucrose uptake and metabolism were constitutive. In contrast, glycerol uptake occurred preferentially in glycerol-grown cells. Independent of the preculture conditions, when sucrose and glycerol were added simultaneously to batch cultures, the sucrose was used first, and once the supply of sucrose was exhausted, the glycerol was consumed. Utilization of nitrate as an N source occurred without nitrite or ammonium accumulation when glycerol was used, but nitrite accumulated when sucrose was used. In chemostat cultures K. oxytoca CECT 4460 efficiently removed nitrate without accumulation of nitrate or ammonium when sucrose, glycerol, or mixtures of these two C sources were used. The growth yields and the efficiencies of C and N utilization were determined at different growth rates in chemostat cultures. Regardless of the C source, yield carbon (YC) ranged between 1.3 and 1.0 g (dry weight) per g of sucrose C or glycerol C consumed. Regardless of the specific growth rate and the C source, yield nitrogen (YN) ranged from 17.2 to 12.5 g (dry weight) per g of nitrate N consumed. In contrast to batch cultures, in continuous cultures glycerol and sucrose were utilized simultaneously, although the specific rate of sucrose consumption was higher than the specific rate of glycerol consumption. In continuous cultures double-nutrient-limited growth appeared with respect to the C/N ratio of the feed medium and the dilution rate, so that for a C/N ratio between 10 and 30 and a growth rate of 0.1 h-1 the process led to simultaneous and efficient removal of the C and N sources used. At a growth rate of 0.2 h-1 the zone of double limitation was between 8 and 11. This suggests that the regimen of double limitation is influenced by the C/N ratio and the growth rate. The results of these experiments were validated by pulse assays.  相似文献   

6.
Synchronized populations of Saccharomyces cerevisiae CBS 426 are characterized by autonomous oscillations of process variables. CO2 evolution rate, O2 uptake rate and heat production rate varied by a factor of 2 for a continuous culture grown at a dilution rate of 0.10 h-1. Elemental analysis showed that the carbon mass fraction of biomass did not change. Since the reactor is not at steady state, the elemental and energy balances were calculated on cumulated quantities, i.e. the integral of the reaction rates. It was possible to show that carbon, degree of reduction and energy balances matched. Application of simple mass balance principles for non-steady state systems indicated that oscillations were basically characterized by changes in biomass production rate. In addition, the amount of intermediates, e.g. ethanol or acetate, produced or consumed was negligible. Growth rate was low during the S-phase (0.075 h-1) and high during the G2, M and G1 phases (0.125 h-1) for a constant dilution rate of 0.10 h-1. However, nitrogen, ash, sulfur and potassium content showed systematic increases during the S-phase (bud initiation). Cell component analyses showed that changes in cellular fractions during oscillations (storage carbohydrate content decreased during the S-phase) were due to changes in production rates, particularly for protein and carbohydrates. Nevertheless, using the data evaluation techniques for dynamic systems presented here, it was shown that storage carbohydrates are not consumed during the S-phase. Only the synthesis rate of the different cell components changed depending on position in cell cycle. The growth process may be divided into two phenomena: the formation of new cells during mitosis with a low yield, and size increase of new born cells with high yield. Both kinetic and stoichiometric coefficients varied with the position in the oscillation: the results showed that biomass structure changed and that specific growth rate, as well as biomass yield, varied by +/- 25% during the oscillation.  相似文献   

7.
Metabolism of D-glucose by Bacteroides ruminicola subsp. brevis, strain B14, has been examined. Growth yield studies gave molar growth yields, corrected for storage polysaccharide, of approximately 66 g (dry weight)/mol of glucose fermented. The storage polysaccharide amounted to about 14% of the total dry weight, or 55% of the total cellular carbohydrate, at full growth. After correcting glucose utilization for incorporation into cellular carbohydrate, measurement of product formation showed that 1.1 succinate, 0.8 acetate, and 0.35 formate are produced and 0.5 CO2 net is taken up during the fermentation of 1 glucose under the conditions used. The implication of these results with respect to adenosine 5'-triphosphate (ATP) molar growth yield calculations is discussed. If substrate-level phosphorylation reactions alone are responsible for ATP generation, then the ATP molar growth yield must be about 23 g (dry weight)/mol of ATP. Alternatively, if anaerobic electron transfer-linked phosphorylation also occurs, the ATP molar growth yield will be lower.  相似文献   

8.
This work describes the characterization of recombinant Escherichia coli ATCC 11303 (pLOI 297) in the production of ethanol from cellulose and xylose. We have examined the fermentation of glucose and xylose, both individually and in mixtures, and the selectivity of ethanol production under various conditions of operation. Xylose metabolism was strongly inhibited by the presence of glucose. Ethanol was a strong inhibitor of both glucose and xylose fermentations; the maximum ethanol levels achieved at 37 degrees C and 42 degrees C were about 50 g/l and 25 g/l respectively. Simultaneous saccharification and fermentation of cellulose with recombinant E. coli and exogenous cellulose showed a high ethanol yield (84% of theoretical) in the hydrolysis regime of pH 5.0 and 37 degrees C. The selectivity of organic acid formation relative to that of ethanol increased at extreme levels of initial glucose concentration; production of succinic and acetic acids increased at low levels of glucose (< 1 g/l), and lactic acid production increased when initial glucose was higher than 100 g/l.  相似文献   

9.
The metabolic and energetic properties of Leuconostoc mesenteroides have been examined with the goal of better understanding the parameters which affect dextransucrase activity and hence allowing the development of strategies for improved dextransucrase production. Glucose and fructose support equivalent specific growth rates (0.6 h-1) under aerobic conditions, but glucose leads to a better biomass yield in anaerobiosis. Both sugars are phosphorylated by specific hexokinases and catabolized through the heterofermentative phosphoketolase pathway. During sucrose-grown cultures, a large fraction of sucrose is converted outside the cell by dextransucrase into dextran and fructose and does not support growth. The other fraction enters the cell, where it is phosphorylated by an inducible sucrose phosphorylase and converted to glucose-6-phosphate (G-6-P) by a constitutive phosphoglucomutase and to heterofermentative products (lactate, acetate, and ethanol). Sucrose supports a higher growth rate (0.98 h-1) than the monosaccharides. When fructose is not consumed simultaneously with G-1-P, the biomass yield relative to ATP is high (16.8 mol of ATP.mol of sucrose-1), and dextransucrase production is directly proportional to growth. However, when the fructose moiety is used, a sink of energy is observed, and dextransucrase production is no longer correlated with growth. As a consequence, fructose catabolism must be avoided to improve the amount of dextransucrase synthesized.  相似文献   

10.
A dynamic model of glucose overflow metabolism in batch and fed-batch cultivations of Escherichia coli W3110 under fully aerobic conditions is presented. Simulation based on the model describes cell growth, respiration, and acetate formation as well as acetate reconsumption during batch cultures, the transition of batch to fed-batch culture, and fed-batch cultures. E. coli excreted acetate only when specific glucose uptake exceeded a critical rate corresponding to a maximum respiration rate. In batch cultures where the glucose uptake was unlimited, the overflow acetate made up to 9. 0 +/- 1.0% carbon/carbon of the glucose consumed. The applicability of the model to dynamic situations was tested by challenging the model with glucose and acetate pulses added during the fed-batch part of the cultures. In the presence of a glucose feed, E. coli utilized acetate 3 times faster than in the absence of glucose. The cells showed no significant difference in maximum specific uptake rate of endogenous acetate produced by glucose overflow and exogenous acetate added to the culture, the value being 0.12-0.18 g g-1 h-1 during the entire fed-batch culture period. Acetate inhibited the specific growth rate according to a noncompetitive model, with the inhibition constant (ki) being 9 g of acetate/L. This was due to the reduced rate of glucose uptake rather than the reduced yield of biomass.  相似文献   

11.
High-cell-density cultivations of Escherichia coli K12 in a dialysis reactor with controlled levels of dissolved oxygen were carried out with different carbon sources: glucose and glycerol. Extremely high cell concentrations of 190 g/l and 180 g/l dry cell weight were obtained in glucose medium and in glycerol medium respectively. Different behaviour was observed in the formation of acetic acid in these cultivations. In glucose medium, acetic acid was formed during the earlier phase of cultivation. However, in glycerol medium, acetic acid formation started later and was particularly rapid at the end of the cultivation. In order to estimate the influence of acetic acid during these high-cell-density cultivations, the inhibitory effect of acetic acid on cell growth was investigated under different culture conditions. It was found that the inhibition of cell growth by acetic acid in the fermentor was much less than that in a shaker culture. On the basis of the results obtained in these investigations of the inhibitory effect of acetic acid, and the mathematical predictions of cell growth in a dialysis reactor, the influence of acetic acid on high-cell-density cultivation is discussed.  相似文献   

12.
Insect cell metabolism was studied in substrate-limited fed batch cultures of Spodoptera frugiperda (Sf-9) cells. Results from a glucose-limited culture, a glutamine-limited culture, a culture limited in both glucose and glutamine, and a batch culture were compared. A stringent relation between glucose excess and alanine formation was found. In contrast, glucose limitation induced ammonium formation, while, at the same time, alanine formation was completely suppressed. Simultaneous glucose and glucosamine limitation suppressed both alanine and ammonium formation. Although the metabolism was influenced by substrate limitation, the specific growth rate was similar in all cultures. Alanine formation must involve incorporation of free ammonium, if ammonium formation is mediated by glutaminase and glutamate dehydrogenase, as our data suggest. On the basis of the results, two possible pathways for the formation of alanine in the intermediary metabolism are suggested. The cellular yield on glucose was increased 6.6 times during glucose limitation, independently of the cellular yield on glutamine, which was increased 50-100 times during glutamine limitation. The results indicate that alanine overflow metabolism is energetically wasteful and that glutamine is a dispensable amino acid for cultured Sf-9 cells. Preliminary data confirm that glutamine can be synthesized by the cells themselves in amounts sufficient to support growth.  相似文献   

13.
Insulin secretion from beta cells in the islets of Langerhans can be stimulated by a number of metabolic fuels, including glucose and glyceraldehyde, and is thought to be mediated by metabolism of the secretagogues and an attendant increase in the ATP:ADP ratio. Curiously, glycerol fails to stimulate insulin secretion, even though it has been reported that islets contain abundant glycerol kinase activity and oxidize glycerol efficiently. We have reinvestigated this point and find that rat islets and the well differentiated insulinoma cell line INS-1 contain negligible glycerol kinase activity. A recombinant adenovirus containing the bacterial glycerol kinase gene (AdCMV-GlpK) was constructed and used to express the enzyme in islets and INS-1 cells, resulting in insulin secretion in response to glycerol. In AdCMV-GlpK-treated INS-1 cells a greater proportion of glycerol is converted to lactate and a lesser proportion is oxidized compared with glucose. The two fuels are equally potent as insulin secretagogues, despite the fact that oxidation of glycerol at its maximally effective dose (2-5 mM) occurs at a rate that is similar to the rate of glucose oxidation at its basal, nonstimulatory concentration (3 mM). We also investigated the possibility that glycerol may signal via expansion of the glycerol phosphate pool to allow enhanced fatty acid esterification and formation of complex lipids. Addition of Triacsin-C, an inhibitor of long-chain acyl-CoA synthetase, to AdCMV-GlpK-treated INS-1 cells did not inhibit glycerol-stimulated insulin secretion despite the fact that it blocked glycerol incorporation into cellular lipids. We conclude from these studies that glycerol kinase expression is sufficient to activate glycerol signaling in beta cells, showing that the failure of normal islets to respond to this substrate is due to a lack of this enzyme activity. Further, our studies show that glycerol signaling is not linked to esterification or oxidation of the substrate, but is likely mediated by its metabolism in the glycerol phosphate shuttle and/or the distal portion of the glycolytic pathway, either of which can lead to production of ATP and an increased ATP:ADP ratio.  相似文献   

14.
15.
The aim of the present study was to evaluate the acute effect of ethanol on insulin sensitivity, and glucose, insulin, free fatty acid (FFA), and triacylglycerol responses in ten patients with non-insulin-dependent (type 2) diabetes. In the test study an oral dose of 0.66 g ethanol/kg followed by continuous intravenous infusion of 0.1 g ethanol/kg per h was given to maintain a constant ethanol level in the blood. In the control study identical volumes of oral water and intravenous saline (9 g NaCl/l) were given. After 90 min insulin sensitivity was determined by the hyperinsulinaemic, euglycaemic clamp technique. Ethanol caused no change in blood glucose or insulin concentrations. The FFA level was suppressed by ethanol while the triacylglycerol level was unaffected. The insulin sensitivity was not affected by ethanol. No major acute effect of ethanol on the glycaemic control in fasting type 2 diabetic patients was found in comparison with what is seen in healthy people. The present study, along with the sparse literature, indicates that the ability of ethanol to induce hypoglycaemia is attenuated or absent in diet-treated type 2 diabetes. Furthermore, we found no change in insulin sensitivity. Consequently, the risk of acute ethanol-induced aberrations in carbohydrate metabolism in diet-treated type 2 diabetes seems to be less than previously expected, when alcohol is not taken as a part of a meal.  相似文献   

16.
The rate of heat evolution (kcal/liter-hr) in mycelial fermentations for novobiocin and cellulase production with media containing noncellular solids was measured by an in situ dynamic calorimetric procedure. Thermal data so obtained have proved significant both in monitoring cell concentration during the trophophase (growth phase) and in serving as a physiological variable in the fermentation process. The validity of this technique has been demonstrated by closing the overall material and energy balances. The maintenance energy in a batch fermentation can be calculated by integrating heat evolution data. This integration method is applicable to a fermentation lacking a precise cell growth curve. The maintenance coefficient, obtained for the novobiocin fermentation by Streptomyces niveus, is equal to 0.028 g glucose equivalent/g cell-hr. The production of novobiocin in the idiophase (production phase) also correlates well with the amount of energy catabolized for maintenance and this results in an observed conversion yield of glucose to novobiocin of 11.8 mg of novobiocin produced per gram of glucose catabolized. A new physiological variable, kilocalories of heat evolved per millimole of oxygen consumed, has been proposed to monitor the state of cells during the fermentation. This method may provide a simple way to monitor on-line shifts in the efficiency of cell respiration and changes in growth yields during a microbial process.  相似文献   

17.
Candida shehatae NCL-3501 utilized glucose and xylose efficiently in batch cultures. The specific rate of ethanol production was higher with mixtures of glucose and xylose (0.64-0.83 g g-1 cells d-1) compared to that with individual sugars (0.38-0.58 g g-1 cells d-1). Although the optimum temperature for growth was 30 degrees C, this strain grew and produced appreciable levels of ethanol at 45 degrees C. A stable ethanol yield (0.40-0.43 g g-1 substrate utilized) was obtained between 10 g L-1 and 80 g L-1 of initial xylose concentration. Conversion efficiency was further improved by immobilization of the cells in calcium alginate beads. Free or immobilized cells of C. shehatae NCL-3501 efficiently utilized sugars present in rice straw hemicellulose hydrolysate, prepared by two different methods, with 48 h. Ethanol yields of 0.45 g g-1 and 0.5 g g-1 from autohydrolysate, and 0.37 g g-1 from acid hydrolysate were produced by free and immobilized cells, respectively.  相似文献   

18.
Glucose infusion into rats has been shown to sensitize/desensitize insulin secretion in response to glucose. In pancreatic islets from glucose-infused rats (GIR) (48 h, 50%, 2 ml/h) basal insulin release (2.8 mmol/l glucose) was more than fourfold compared with islets from saline-infused controls and the concentration-response curve for glucose was shifted to the left with a maximum at 11.1 mmol/l. The concentration-response curve for 45Ca2+ uptake was also shifted to the left in islets from GIR with a maximum at 11.1 mmol/l glucose. Starting from a high basal level at 2.8 mmol/l glucose KCl produced no insulin release or 45Ca2+ uptake in islets from GIR. Islets from GIR exhibited a higher ATP/ADP ratio in the presence of 2.8 mmol/l glucose and marked inhibition of 86Rb+ efflux occurred even at 3 mmol/l glucose. Moreover, in islets from GIR the redox ratios of pyridine nucleotides were increased. On the other hand insulin content was reduced to about 20%. The data suggest that a 48-h glucose infusion sensitizes glucose-induced insulin release in vitro in concentrations below 11.1 mmol/l. This may, at least in part, be due to enhanced glucose metabolism providing increased availability of critical metabolic factors including ATP which, in turn, decrease the threshold for depolarization and therefore calcium uptake. Calcium uptake may then be further augmented by elevation of the redox state of pyridine nucleotides.  相似文献   

19.
The influence of aeration and glucose feeding on the stability of recombinant protein A in Escherichia coli during the transition period from a fed-batch cultivation to downstream processing was studied. Neither interruption of the feeding under aerobic conditions nor anaerobic conditions in presence of glucose could stabilize protein A completely and the intracellular ATP pool did not decrease to less than 0.75-1 mM by this treatment. On the other hand, the absence of both oxygen and glucose resulted in a decrease of the ATP pool to less than 0.5 mM and almost complete stabilization of protein A. The decrease of ATP was more severe when sulfite was used instead of nitrogen gas to create anaerobic conditions in presence of glucose. This also resulted in nearly complete stabilization of protein A, which might be explained by an inhibiting effect of sodium sulfite on fermentation. Therefore, protein stabilization and decrease of the ATP pool were correlated in experiments in vivo. The concentrations of ADP and AMP increased during starvation and may also play a role in stabilization of the protein in vivo. ATP may be a limiting factor of proteolysis also during further steps of downstream processing. Its concentration decreases by 80-90% during harvesting and centrifugation of biomass and even further during disruption of cells. However, neither addition nor regeneration of ATP in cell disintegrate was enough to restore degradation of protein A, indicating that an additional factor limits proteolysis in vitro.  相似文献   

20.
Ethanol exerts both stimulant-like and sedative-like subjective and behavioral effects in humans depending on the dose, the time after ingestion and, we will argue, also on the individual taking the drug. This study assessed stimulant-like and sedative-like subjective and behavioral effects of ethanol during the ascending and descending limbs of the blood alcohol curve across a range of doses in nonproblem social drinkers. Forty-nine healthy men and women, 21 to 35 years old, consumed a beverage containing placebo or ethanol (0.2, 0.4, or 0.8 g/kg) on four separate laboratory sessions, in randomized order and under double-blind conditions. Subjective and behavioral responses were assessed before and at regular intervals for 3 hr after ingestion of the beverage. The lowest dose of ethanol (0.2 g/kg) only produced negligible subjective effects compared to placebo. The moderate dose (0.4 g/kg) increased sedative-like effects 90 min after ethanol ingestion but did not increase ratings of stimulant effects at any time. The highest dose (0.8 g/kg) increased ratings of both stimulant- and sedative-like effects during the ascending limb and produced only sedative-like effects during the descending limb. Closer examination of the data revealed that individual differences in response to the highest dose of ethanol accounted for this unexpected pattern of results: about half of the subjects reported stimulant-like effects on the ascending limb and sedative-like effects on the descending limb after 0.8 g/kg ethanol, whereas the other half did not report stimulant-like effects at any time after administration of ethanol. These results challenge the simple assumption that ethanol has biphasic subjective effects across both dose and time, and extend previous findings demonstrating individual differences in response to ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号