首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
张建  林超  杨柳  王牧麒 《中国冶金》2019,29(12):59-63
炉缸的运行状况对高炉长寿起着决定性作用。首钢京唐2号高炉2017年8月开始炉缸侧壁温度急剧上升,对高炉的正常生产和人员安全提出了严峻考验。炉缸侧壁高温点的位置坐标表明,首钢京唐2号高炉炉缸侧壁温度异常升高的直接原因是炉缸内部铁水环流加剧对炉缸内衬的化学侵蚀和物理冲刷。进一步从铁水成分、炉底温度、铁口深度和铁水流速等因素分析,证实了2号高炉炉缸侧壁温度升高的根源在于炉缸活跃性恶化。此外,较高的硫负荷和焦炭灰分、较低的终渣碱度及水箱漏水等因素也在一定程度上促成了炉缸不活的状态。  相似文献   

2.
曹锋 《炼铁》2012,(4):22-25
结合首钢京唐高炉生产实践,对高炉炉芯温度的影响因素进行了分析,认为主要因素有:炉底构造、原燃料的质量和构成、装料制度、送风制度、渣铁性能、热制度、炉底冷却制度、出铁情况、喷吹煤粉等。  相似文献   

3.
马成伟  王金印  牛理国  李烁  陈龙 《炼铁》2020,39(1):28-31
对首钢京唐1号高炉炉缸侧壁温度升高后的护炉措施进行了总结。1号高炉炉役生产至10年之际,频繁发生局部炉缸炉衬热电偶温度升高的问题(TE31323上升至609℃),严重威胁安全生产。通过采取加钛矿护炉、强化冷却、调整布料制度、控制入炉碱金属、加强原燃料的管理等措施,炉缸侧壁高温点得以控制,保证了高炉安全生产,各项生产指标良好。  相似文献   

4.
宝钢不锈钢2500 m3高炉活跃炉缸冶炼实践   总被引:1,自引:0,他引:1  
宝钢不锈钢2500m~3高炉因入炉原燃料条件变差,炉缸工作状况恶化,炉芯温度持续下降。通过采取一系列活跃炉缸的措施,炉芯温度止跌回升,炉缸工作状况明显改善,高炉技术经济指标恢复正常。  相似文献   

5.
单洎华 《炼铁》2000,19(1):9-13
分析了首钢1号高炉陶瓷杯炉缸的温度分布与侵蚀特点,并与炭砖炉缸进行了对比。分析表明,陶瓷杯炉缸具有耐侵蚀、节能的特点。  相似文献   

6.
对湘钢1号高炉炉芯温度下降的原因及治理进行了总结分析。通过采取精料、加强炉内操作等措施,使高炉炉缸温度逐步恢复,炉况恢复稳定,取得较好的技术经济指标。  相似文献   

7.
王喜元  陈川  宋志辉  郭宏烈 《炼铁》2019,38(5):20-24
针对首钢京唐2号高炉炉缸侧壁温度异常升现象(最高达到799℃),通过采取控制冶炼强度、加钛矿护炉、优化炉前操作制度、提高炉缸活跃度、优化煤气流分布等一系列护炉措施,使炉缸温度逐步下降,并长期稳定在100℃以下。认为护炉是一个系统工程,各个措施不是孤立的,而应相互配合,才能取得既护好炉、又有一定产量水平和技术指标的综合效果。  相似文献   

8.
首钢迁钢1号高炉长寿设计   总被引:2,自引:2,他引:0  
通过讨论炉底炉缸长寿技术的发展历程,总结首钢高炉长寿经验,提出高炉炉缸炉底长寿设计的思想和理念——控制炉缸炉底的“象脚状”侵蚀,避开炉缸的过度侵蚀,使炉缸炉底侵蚀向“锅底状”侵蚀的方向发展。首钢迁钢1号高炉炉缸炉底的设计,结合数学模型计算,实现了长寿设计。  相似文献   

9.
唐顺兵 《钢铁》2011,46(4):19-22,58
太钢4350m3高炉在3年多的生产过程中,通过多次炉芯温度的高低起伏变化,总结出炉芯温度对炉缸的工作状态、炉缸的侧壁温度和高炉接受强化冶炼的能力等有着一定的影响.分析了从焦炭质量、煤气流、炉芯死料柱温度、高炉产能和渣铁成分等几个方面来实现炉芯温度有效控制的措施和意义.  相似文献   

10.
为了分析投产初期高炉炉缸炉底的温度分布情况,以经典传热模型为基础,采用有限元计算技术,建立了昆钢新区2 500 m~3高炉炉缸炉底侵蚀模型。本模型以高炉开炉初期温度为基础,绘制出炉缸炉底温度场分布曲线,模型计算值与热电偶实测值相比,误差在-6.52%~+7.69%的范围内,表明模型计算较为准确。根据模型计算结果,提出了加长风口小套长度、提高鼓风动能和加大死铁层厚度等工作建议,为制定高炉合理的操作维护方针和完善高炉长寿设计提供重要参考。  相似文献   

11.
针对当前高炉长寿管理滞后和针对性差的现状,将高炉炉缸工艺设计、传热学理论与高炉操作工艺相结合,开发了一套炉缸长寿智能管理系统。除传统炉缸侵蚀模型的炭砖侵蚀曲线计算功能以外,还具有凝铁层在线监控、炉缸气隙判断、凝铁层减薄原因诊断和给出针对性改善建议4项核心功能。该系统全部模块均进行在线监测、计算、诊断和建议,其关键目的不是计算侵蚀曲线,而是防止炉缸侵蚀的发生,可为做好高炉的长寿管理、延长高炉寿命起到重要作用。  相似文献   

12.
为探究沙钢3号高炉炉缸侧壁温度升高原因,对沙钢3号高炉开炉以来的热电偶温度数据及热流强度变化趋势进行统计,并计算了炭砖的残余厚度。结合3号高炉的死铁层深度及冷却系统设计等参数,对炉缸侧壁温度升高的原因进行了解析。结果表明,沙钢3号高炉炭砖侵蚀薄弱区域处于铁口下方1~2 m,最薄位置处于西铁口,炭砖残余厚度约为517 mm。结合高炉炉缸设计发现,其炭砖侵蚀严重区域处于炉缸冷却壁薄弱位置,且与炉缸死料柱角部位置有关。研究相关结果可为国内大中型高炉设计提供相关指导。  相似文献   

13.
从炉缸结构设计关键要素的分析着手,从侵蚀机制、炉缸传热体系的建立到炉缸的设计理念对炉缸的长寿 进行了全面的论述。指出高炉长寿的关键控制环节为:设计、施工、烘炉、开炉节奏、操作稳定、维护管理。在合适 的炉缸冷却系统和结构配置条件下,有效杜绝和防止气隙是炉缸长寿的关键。设计要有完善的防止气隙的措施; 安装中要严格控制每一个环节;采用热水烘炉提高炉墙温度,促进水分蒸发;控制高炉开炉进程,给予新高炉一个 磨合期,保证炉缸的传热体系可靠、有效,以实现炉缸的无气隙化操作。无论炉缸耐材采用何种配置结构和采用何 种冷却系统,都必须以建立良好的传热体系为前提,只有尽快形成稳定的渣铁壳,才能实现炉缸的长寿。  相似文献   

14.
炉缸寿命长短直接决定了高炉的一代炉役寿命,至关重要。结合京唐2座有效容积5 500 m 3 高炉的炉缸 构造及对2号高炉炉缸局部温度升高后的治理,浅谈对高炉炉缸长寿及维护的认识。  相似文献   

15.
为了研究首钢A高炉炉渣降低MgO的可行性,利用FactSage热力学软件,从理论上解析首钢A高炉炉渣中MgO对固相析出温度和黏度的影响。研究发现,A高炉炉渣固相析出温度在1 400 ℃左右,炉渣在高炉炉缸中全为液相并具有较好的流动性。1 500 ℃下,现有炉渣组分在相图中液相区,若MgO含量降低,炉渣仍处在液相区。MgO质量分数在2.87%~7.37%区间变化时,随MgO含量升高,固相析出温度增加;MgO质量分数升高1%,炉渣固相析出温度升高约3.73 ℃。随MgO含量升高,炉渣黏度降低。1 500 ℃下,MgO质量分数升高1%时,炉渣黏度降低0.014 Pa·s。分析认为,炉缸热状态较好(铁水温度在1 480 ℃以上)时,适当降低MgO质量分数至6%,炉渣黏度不会受较大影响;炉缸热状态较差(铁水温度在1 480 ℃以下)时,不建议降低MgO含量。  相似文献   

16.
根据炉缸的传热特点,推导了炉缸传热体系的计算公式,利用公式计算结果,分析了炉缸冷却水对延长高炉寿命的作用,重点是冷却水量、冷却水温对炉缸传热的影响规律。洒水冷却的炉壳温度比自然冷却的炉壳温度有显著降低,说明冷却水对维护炉缸安全生产具有重要的作用;在炉缸传热体系中,当水速大于2m/s时,增大冷却水量对炉内传出热量的影响是...  相似文献   

17.
朱伟素 《中国冶金》2017,27(2):37-40
采用假想面法建立了辐射管辊底式热处理炉炉内钢板加热的二维数学模型,开发了辐射管热处理炉模型控制系统。该模型包括钢板温度跟踪和炉温设定两个模块,钢板温度跟踪可以实时计算钢板在炉内的温度,为钢板热处理进入保温状态提供依据;炉温设定可以计算不同钢种、不同厚度、不同热处理目标温度下钢板对应的炉温设定值范围,用于指导生产。该模型已成功应用于某公司的辐射管辊底式热处理炉上,通过埋偶试验对模型进行了验证。试验结果表明,模型计算精度在±5℃以内,控制效果良好。  相似文献   

18.
王瀚  王静松  彭星 《中国冶金》2021,31(5):19-25
为降低高炉炼铁中固体碳耗、高效利用冶金高温副产煤气,提出高炉富氧喷吹还原性气体工艺流程,建立基于物料平衡与热平衡的高炉数学模型,并修正了理论燃烧温度计算公式.应用该模型分别对传统高炉、炉缸富氧喷吹还原性气体以及炉身喷吹循环煤气的炼铁流程进行技术参数分析.结果表明,炉缸富氧喷吹还原性气体以及炉身喷吹循环煤气的炼铁流程中,...  相似文献   

19.
提高风温可以有效降低高炉燃料消耗,促进高炉生产稳定顺行,是绿色低碳炼铁技术的重要发展方向之一。研究了热风炉热量传输过程和传热特性,通过传热学机理的研究解析,阐述热风炉加热面积与风温之间的关系,提出提高热流通量以改善热风炉传热的观点。研究了热风炉理论燃烧温度、拱顶温度和风温之间的关系,介绍了利用低热值高炉煤气和回收热风炉烟气余热,通过耦合预热和能量梯级利用的技术方法,实现高风温的技术创新及实践。提出了实现热风炉智能化操作的技术要素,论述了合理控制拱顶温度和抑制NOx大量生成的工艺方法,以及有效预防热风炉炉壳晶间应力腐蚀的技术措施。指出实现低热值煤气的高效利用和高值转化,提高风温、降低燃料比和CO2排放,是未来高炉炼铁的关键共性技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号