首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
A surface equation of state, applicable to liquid-expanded (LE) monolayers, was derived by analyzing the Helmholtz free energy of the LE monolayers. Based on this equation, a general equation was obtained to describe all states of single-component phospholipid monolayers during comprassion. To verify the applicability of the equation, π-A isotherms of 1,2-dipalmitoylphosphatidylcholine (DPPC), 1,2-dipalmitoylphosphatidylglycerol (DPPG), and 1,2-dimyristoyphosphatildylcholine (DMPC) were measured. The comparison between model and experimental values indicates that the equation can describe the behavior of pure phospholipid monolayers.  相似文献   

2.
Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and supercritical water (673--773 K, 25---35 MPa) are investigated by molecular dynamics simulation with site-site models.It is found that at the ambient condition, the water molecules surrounding a benzene molecule form a hydrogen bond network. The hydrogen bond interaction between supercritical water molecules decreases dramatically under supercritical conditions. The diffusion coefficients of both the solute molecule and solvent molecule at supercritical conditions increase by 30---180 times than those at the ambient condition. With the temperature approaching the critical temperature, the change of diffusion coefficient with pressure becomes pronounced.  相似文献   

3.
Poly(N-isopropylacrylamide)(PNIPAAm) grafted onto silica,which may be used for reverse phase chromatography(RPC),was simulated and synthesized for protein separation with temperature-triggered adsorption and desorption.Molecular dynamics simulation at an all-atom level was performed to illustrate the adsorption/desorption behavior of cytochrome c,the model protein,on PNIPAAm-grafted-silica,a temperature responsive adsorbent.At a temperature above the lower critical solution temperature(LCST),the PNIPAAm chains aggregate on the silica surface,forming a hydrophobic surface that is favorable for the hydrophobic adsorption of cytochrome c,which has a high exposure of hydrophobic patches.At temperatures below the LCST,the PNIPAAm chains stretch,forming hydrophilic surface due to hydrogen bonding between PNIPAAm and surrounding water.Desorption of cytochrome c on the PNIPAAm-grafted-silica surface occurs as a result of competition with water,which forms hydrogen bonds with the protein.The conformational transitions of both cytochrome c and PNIPAAm are monitored,providing molecular insight into this temperature-responsive RPC technique.PNIPAAm-grafted-silica beads were synthesized and used for the adsorption and desorption of cytochrome c at approximately 313 K and 290 K,respectively.The experimental results validate the molecular dynamics simulation.In comparison to conventional RPC,using temperature as a driving force for RPC reduces the risk of protein denaturation caused by exposure to chaotropic solvents.Moreover,it simplifies the separation process by avoiding the buffer exchange operations between the steps.  相似文献   

4.
How to completely remove the water from ionic liquids(ILs) is difficult for researchers because of the hygroscopicity of ILs. In order to study the hygroscopicity of ILs, two kinds of ILs, 1-Butyl-3-methylimidazolium hexafluorophosphate([Bmim][PF_6]) and 1-Butyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)([Bmim][NTf_2]) were investigated by molecular dynamics simulations. Although[Bmim][PF_6] and [Bmim][NTf_2] are hydrophobic, both of the ILs could absorb water molecules from the vapor. In this work, the process of absorbing water from the vapor phase was studied, and the water molecules could disperse into the IL. Aggregation was observed with increasing the water concentration.Although the absorbed water increases obviously, the amount of free water and small cluster in the ILs does not change significantly and always stays at a certain level. The amount of free water and small cluster in [Bmim][PF_6] is more than that in [Bmim][NTf_2], which is consistent with their hydrophobicity. In addition, the liquid-vacuum and liquid–liquid interfaces of the ILs were simulated and analyzed in detail.The number density distribution and angle distribution indicated that [Bmim]+cations arrangement regularly at the IL-vacuum interface. The butyl chain point to the vacuum, while the imidazlium ring is close to the IL phase region and perpendicular to the interface. While at the IL-water interface, the cations and anions are disordered.  相似文献   

5.
A free-standing superhydrophobic film is prepared by sequentially dip-coating a commercially available filter paper with nano SiO2 suspension, epoxy emulsion, and octyltrimethoxysilane solution. A surface with micro- or nano-roughness is formed because SiO2 nanoparticles are uniformly and firmly adhered on the backbone of the filter paper by the cured epoxy resin. Furthermore, the surface energy is significantly reduced because of introducing octytrimethoxysilane. Such a surface structure makes the prepared film a superhydrophobic material. Due to its free-standing nature, this superhydrophobic film can be used to remove water from turbine oil by filtration. The efficiency of water removal is high (up to 94.1%), and the filtration process is driven solely by gravity without extra energy consumption. Because of the facile fabrication process and the high efficiency of water removal, this free-standing superhydrophobic film may find application in power industry.  相似文献   

6.
Capture of CO2 by hydrate is one of the attractive technologies for reducing greenhouse effect.The primary challenges are the large energy consumption,low hydrate formation rate and separation efficiency.This work presents a new method for capture of CO2 from simulated flue gasCO2(16.60%,by mole) /N2 binary mixture by formation of cyclopentane(CP) hydrates at initial temperature of 8.1°C with the feed pressures from 2.49 to 3.95 MPa.The effect of cyclopentane and cyclopentane/water emulsion on the hydrate formation rate and CO2 separation efficiency was studied in a 1000 ml stirred reactor.The results showed the hydrate formation rate could be increased remarkably with cyclopentane/water emulsion.CO2 could be enriched to 43.97%(by mole) and 35.29%(by mole) from simulated flue gas with cyclopentane and cyclopentane/water(O/W) emulsion,respectively,by one stage hydrate separation under low feed pressure.CO2 separation factor with cyclopentane was 6.18,higher than that with cyclopentane/water emulsion(4.01) ,in the range of the feed pressure.The results demonstrated that cyclopentane/water emulsion is a good additive for efficient hydrate capture of CO2.  相似文献   

7.
The molecular dynamics (MD) was employed to simulate the diffusion coefficient of sodium chloride at infinite dilution in supercritical water from 703.2 K to 763.2 K and from 30 MPa to 45 MPa. Based on the simulated data and the Patel-Teja(PT) equation of state and the Liu-Ruckenstein equation, an equation for calculating the diffusion coefficient of NaCl at infinite dilution in supercritical water is proposed. Both the agreement between the simulated and correlated data, and that between the simulated and predicted data of diffusion coefficients for NaCl in supercritical water ranging from 703.2K to 803.2 K and from 25 MPa to 50 MPa show that this equation is applicable for the calculation of diffusion coefficients.  相似文献   

8.
The molecular dynamics(MD) was employed to simulate the diffusion coefficient of sodium chloride at infinite dilution in supercritical water from 703.2K to 763.2K and from 30 MPa to 45 MPa ,Based on the simulated data and the Patel-Teja(PT) equation of state and the Liu-Ruckenstein equation,an equation for calculating the diffusion coefficient of NaCl at infinite dilution in supercritical water is proposed,Both the agreement between the simulated and correlated data,and that between the simulated and predicted data of diffusion coefficients for NaCl in supercritical water ranging from 703.2K to 803.2K and from 25 MPa to 50MPa show that this equation is applicable for calculation of diffusion coefficients.  相似文献   

9.
Molecular imprinted polymer membranes (MIM) combine the merits of molecular imprint and membrane technology. In this work, a very thin of imprinted polymer that can specifically and selectively absorb the basic template (adenine) was grafted on the surface of polyvinylidene fluoride membrane by photo-grafting copolymerization. Because the molecular imprinted polymer is grafted on the surface of the matrix membrane without blocking the membrane pores, the resultant MIMs have high flux as microfiltration membrane (0.26mol·m-2·h-1 of template and flux for distilled water was 3.6ml·mim-1·cm-2 at 0.8 MPa). Moreover, the MIMs can absorb/desorb template molecules rapidly. Usually, it only takes several minutes for MIMs to absorb more than 75% of the template (adenine) in aqueous solution. And the influences of the type and amount of the functional monomers, the amount of the cross-linker on the absorption capability are discussed to determine the optimal preparation conditions.  相似文献   

10.
The structural and dynamical properties of hexafluoroacetylacetone (HFA) and acetylacetone (AA) at the water/supercritical CO2 (Sc-CO2) interface at 20 MPa and 318.15 K are investigated by molecular dynamics simulations. The TIP3P potential is used for water and the EPM2 model is for CO2. The water phase and SC-CO2 phase form a distinct immiscible liquid-liquid interface. The two chelating molecules show interfacial preference. Comparatively, the AA molecules show somewhat more preference for interfacial region, whereas the HFA molecules are preferably near the Sc-CO2 phase. The orientational distribution of the β-diketone molecules and the radial distribution functions between β-diketones and solvents are obtained in order to study the microscopic structural properties of the β-diketones at the water-SC-CO2 interface. It is found that the translational diffusion and rotational diffusion of HFA and AA are obviously anisotropic and decrease as the β-diketone molecules approach the interface. The anisotropic dynamic behavior for the solute molecules is related to the corresponding structural properties.  相似文献   

11.
The folding of amyloid beta (1-40) peptide into beta-sheet-containing fibrils is thought to play a causative role in Alzheimer's disease. Because of its amphiphilic character, the peptide can interact with phospholipid membranes. Langmuir monolayers of negatively charged DPPS, DPPG, and DMPG, and also of zwitterionic DPPC and DMPC, have been used to study the influence of the peptide on the lipid packing and, vice versa, the influence of phospholipid monolayers on the peptide secondary structure by infrared reflection absorption spectroscopy and grazing incidence X-ray diffraction. The peptide adsorbs at the air/water (buffer) interface, and also inserts into uncompressed phospholipid monolayers. When adsorbed at the interface, the peptide adopts a beta-sheet conformation, with the long axis of these beta-sheets oriented almost parallel to the surface. If the lipid exhibits a condensed monolayer phase, then compression of the complex monolayer with the inserted peptide leads to the squeezing out of the peptide at higher surface pressures (above 30 mN m(-1)). The peptide desorbs completely from zwitterionic monolayers and negatively charged DPPG and DPPS monolayers on buffer, but remains adsorbed in the beta-sheet conformation at negatively charged monolayers on water. This can be explained in terms of electrostatic interactions with the lipid head groups. It also remains adsorbed at, or penetrating into, disordered anionic monolayers on buffer. Additionally, the peptide does not influence the condensed monolayer structure at physiological pH and modest ionic strength.  相似文献   

12.
在前期工作的基础上,考虑到不同磷脂的临界相变面积Ac的影响,导出了单分子膜的普遍化状态方程,并通过测定DPPC、DMPC单分子膜的π-A等温线,对该方程的适用性进行了验证。结果表明,该模型能较好地描述磷脂单分子膜在整个呼吸压缩舒张过程中的表面特性,特别是在相变区域,模型值与实验值也能吻合良好。  相似文献   

13.
The relationship between the antioxidant effect of acidic phospholipids, phosphatidic acid (PA), phosphatidylglycerol (PG) and phosphatidylserine (PS), on iron-induced lipid peroxidation of phospholipid bilayers and their abilities to bind iron ion was examined in egg yolk phosphatidylcholine large unilamellar vesicles (EYPC LUV). The effect of each acidic phospholipid added to the vesicles at 10 mol% was assessed by measuring phosphatidylcholine hydroperoxides (PC-OOH) and thiobarbituric acid-reactive substances. The addition of dipalmitoyl PS (DPPS) showed a significant inhibitory effect, although the other two acidic phospholipids, dipalmitoyl PA (DPPA) and dipalmitoyl PC (DPPG), did not exert the inhibition. Neither dipalmitoyl PC (DPPC) nor dipalmitoyl phophatidylethanolamine (DPPE) showed any remarkable inhibition on this system. None of the tested phospholipids affected the lipid peroxidation rate remarkably when the vesicles were exposed to a water-soluble radical generator. The iron-binding ability of each phospholipid was estimated on the basis of the amounts of iron recovered in the chloroform/methanol phase after separation of the vesicle solution to water/methanol and chloroform/methanol phases. EYPC LUV containing DPPS, DPPA, and DPPG had higher amounts of bound iron than those containing DPPC and DPPE, indicating that these three acidic phospholipids possess an iron-binding ability at a similar level. Nevertheless, only DPPS suppressed iron-dependent decomposition of PC-OOH significantly. Therefore, it is likely that these three acidic phospholipids possess a significant iron-binding ability, although this ability per se does not warrant them antioxidative activities. The ability to suppress the iron-dependent decomposition of PC-OOH may explain the unique antioxidant activity of PS.  相似文献   

14.
Polyetheretherketone (PEEK) is a highly biocompatible polymer widely used in medicine as an implant production material. In this article, the PEEK surface was characterized in terms of its wettabillity properties after the physicochemical modifications by treatment with the low-temperature air plasma and covering with the Langmuir–Blodgett (LB) monolayers of polypeptide (cyclosporine A, CsA) and/or phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC). The LB deposition was preceded by the analysis of miscibility and morphology of monolayers at the air/water interface by means of the Langmuir technique and Brewster angle microscopy (BAM). Then, wettability of the polymer-supported films was evaluated by the contact angle measurements of three probe liquids of different characters (two polar—water and formamide, one apolar—diiodomethane). The measured contact angles allowed for determination of the surface free energy and its components based on the Lifshitz-van der Waals/acid–base (LWAB) approach. Some relations between the kind and magnitude of interactions within the model membranes on the water subphase and those of the PEEK-supported membranes with the liquids were found out. The results allowed obtaining the interesting models of biological coatings with potential applications.  相似文献   

15.
Jess M. Waller  Ronald K. Eby 《Polymer》1992,33(24):5334-5337
This communication describes the application and extension of a method for calculating the helical parameters with which to describe molecular conformations. The method, which was originally developed by Shimanouchi and others, is applied to a polyimide of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and 2,2-dimethyl-1,3-(4-aminophenoxy)propane (DMDA) which has eight torsional bonds in the chemical repeat unit. Discrete low energy states for these torsions were determined by Ramanchandran energy maps of sequential dihedral pairs or single bond torsional energy diagrams. The total number of possible low energy conformations for these states is 1152 including conformationally related isoenantiomorphs. The method conveniently generates the conformations for subsequent crystal structure packing and refinement. Consideration of these together with the X-ray data of Cheng and co-workers reduces the number to about 15 with about a 2/1 conformation and a c axis of approximately 49.2 Å. Of these, about half appear to be good candidates for crystal packing.  相似文献   

16.
Imatinib, one of the most used therapeutic agents to treat leukemia, is an inhibitor that specifically blocks the activity of tyrosine kinases. The molecule of imatinib is flexible and contains several functional groups able to take part in H-bonding and hydrophobic interactions. Analysis of molecular conformations for this drug was carried out using density functional theory calculations of rotation potentials along single bonds and by analyzing crystal structures of imatinib-containing compounds taken from the Cambridge Structural Database and the Protein Data Bank. Rotation along the N-C bond in the region of the amide group was found to be the reason for two relatively stable molecular conformations, an extended and a folded one. The role of various types of intermolecular interactions in stabilization of the particular molecular conformation was studied in terms of (i) the likelihood of H-bond formation, and (ii) their contribution to the Voronoi molecular surface. It is shown that experimentally observed hydrogen bonds are in accord with the likelihood of their formation. The number of H-bonds in ligand-receptor complexes surpasses that in imatinib salts due to the large number of donors and acceptors of H-bonding within the binding pocket of tyrosine kinases. Contribution of hydrophilic intermolecular interactions to the Voronoi molecular surface is similar for both conformations, while π...π stacking is more typical for the folded conformation of imatinib.  相似文献   

17.
The folding process of the 20 residue Trp-cage mini-protein was investigated using standard temperature replica exchange molecular dynamics (T-RexMD) simulation and a biasing potential RexMD (BP-RexMD) method. In contrast to several conventional molecular dynamics simulations, both RexMD methods sampled conformations close to the native structure after 10–20 ns simulation time as the dominant conformational states. In contrast, to T-RexMD involving 16 replicas the BP-RexMD method achieved very similar sampling results with only five replicas. The result indicates that the BP-RexMD method is well suited to study folding processes of proteins at a significantly smaller computational cost, compared to T-RexMD. Both RexMD methods sampled not only similar final states but also agreed on the sampling of intermediate conformations during Trp-cage folding. The analysis of the sampled potential energy contributions indicated that Trp-cage folding is favored by both van der Waals and to a lesser degree electrostatic contributions. Folding does not introduce any significant sterical strain as reflected by similar energy distributions of bonded energy terms (bond length, bond angle and dihedral angle) of folded and unfolded Trp-cage structures.  相似文献   

18.
The adsorption energy (Δεs), the change in energy on breaking a solvent-adsorbent bond and forming a segment-adsorbent bond, for poly(dimethyl siloxane) at the solution/silica interface has been measured under actual adsorption conditions. The effect of the adsorption energy on the extent of mass adsorption and on the conformation of the adsorbed polymer layer was evaluated. At low surface coverage, it is primarily the adsorption energy which determines the conformation of the adsorbed polymer layer as a function of the molecular weight. This effect is opposed by an entropy lowering, resulting from a restriction of the configuration of the adsorbed polymer molecules. At high surface coverage, lateral interactions between the adsorbed polymer molecules became an important factor causing a decrease in the fraction of directly adsorbed segments per molecule with increasing coverage.  相似文献   

19.
Interest in potential high-performance polymers, leading to characterization and development of the rodlike poly(p-phenylene benzobisoxazoles) (PBO) and poly(p-phenylene benzobisthiazoles) (PBT), has recently been extended to a related group of polymers referred to as AAPBO, ABPBO, AAPBT, and ABPBT. In this study, geometry-optimized CNDO/2 molecular orbital calculations have been carried out on AAPBO and ABPBO model compounds to determine conformational energies as a function of rotation about each type of rotatable bond within the repeat units. For AAPBO, which contains two types of rotatable bonds per repeat unit, the bond between the benzoxazole group and p-phenylene group prefers the coplanar conformation with a barrier to free rotation of 2.1 kcal mol?1, while the bond between the benzoxazole groups prefers a conformation approximately 60 degrees away from coplanarity with a barrier to coplanarity and to free rotation of 3.6 kcal mol?1. For ABPBO, which contains only the former type of rotatable bond per repeat unit, the coplanar conformations were preferred with a barrier to free rotation of 1.6 kcal mol?1. These results are in excellent agreement with the results of both theoretical and experimental studies on the structurally analogous PBO. They are also consistent with the liquid crystalline behavior found for ABPBO but not for AAPBO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号