首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In case of RC members strengthened by means of externally bonded reinforcement, a premature failure can be detected in addition to the conventional modes of failure observed in RC unstrengthened beams. The premature failure occurs mainly due to both shear and normal stresses induced in either the external reinforcement–concrete interface or at the level of steel reinforcement. This research is part of a complete programme aiming to set up design formulae to predict the strength of CFRP strengthened beams, particularly when premature failure through laminates-end shear or concrete cover delamination occurs. Series of RC beams were strengthened with carbon-fiber-reinforced plastic (CFRP) laminates and tested to estimate the extent of the applicability of the formulae proposed by the authors, as well as to study the influence of the layout of the external reinforcement in terms of unsheeted length (the distance between CFRP laminates-end and the nearer support) and cross-sectional area, on the behaviour of strengthened beams. The predictions using the proposed formulae are compared with the obtained experimental results, as well as with the calculated design limit states. The interfacial shear stress and the maximum deflection corresponding to the predicted values at maximum and service loads are also studied.  相似文献   

2.
This paper presents the effects of adhesive properties on structural performance of reinforced concrete (RC) beams strengthened with carbon fiber reinforced plastic (CFRP) strips. The epoxy adhesives modified with liquid rubber of different content were used to bond the CFRP strips, and four point bending experiments were carried out on RC beams. The experimental results show that different CFRP strip thickness of 0.22 and 0.44 mm resulted in a transition of failure mechanism from interfacial debonding along the CFRP-concrete interface to concrete cover separation starting from the end of CFRP strips in the concrete. Moreover, it is suggested that no matter interfacial debonding or concrete cover separation, the rubber modifier enhanced the structural performance by increasing the maximum load-carrying capacity and the corresponding ductility, compared with the beams bonded with a neat epoxy resin. The improvement of structural performance due to modified adhesive was associated with the modification of stress profiles along the CFRP-concrete interface especially the stress concentration at the end of FRP, and the enhanced interlaminar fracture toughness. Rubber modified epoxy therefore is worth further studying in practical repair applications.  相似文献   

3.
CFRP加固混凝土梁各受力阶段的剥离机理   总被引:4,自引:0,他引:4  
粘贴碳纤维片加固混凝土梁的试验数据和破坏模式表明,在锚固措施可靠的情况下,界面粘贴失效或基面混凝土剥离是加固混凝土梁的主要早期破坏形态。为研究混凝土梁不同受力阶段对界面粘结失效或混凝土剥离的影响程度,针对实际加固工程中常见的混凝土梁损伤状况并结合室内试验结果,分别研究了粘贴碳纤维片加固完整梁及不同开裂程度梁在不同受力阶段中的界面应力分布与剥离机理,指出了加固梁的开裂或裂缝扩展是导致界面或粘贴基面混凝土剥离的主要原因。最后,结合实际混凝土梁的损伤特点,提出了加固设计施工过程中的注意事项及应采取的技术措施。  相似文献   

4.
This paper presents results of an experimental investigation on T-section reinforced concrete (RC) beams strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) strips. Specimens, one of which was the control specimen and the remaining six were the shear deficient test specimens, were tested under cyclic load to investigate the effect of CFRP strips on behavior and strength. Five shear deficient specimens were strengthened with side bonded and U-jacketed CFRP strips, and remaining one tested with its virgin condition without strengthening. The type and arrangement of CFRP strips and the anchorage used to fasten the strips to the concrete are the variables of this experimental work. The main objective was to analyze the behavior and failure modes of T-section RC beams strengthened in shear with externally bonded CFRP strips. According to test results premature debonding was the dominant failure mode of externally strengthened RC beams so the effect of anchorage usage on behavior and strength was also investigated. To verify the reliability of shear design equations and guidelines, experimental results were compared with all common guidelines and published design equations. This comparison and validation of guidelines is one of the main objectives of this work. The test results confirmed that all CFRP arrangements differ from CFRP strip width and arrangement, improved the strength and behavior of the specimens in different level significantly.  相似文献   

5.
金浏  夏海  蒋轩昂  杜修力 《工程力学》2021,38(3):50-59,85
剪跨比对FRP抗剪加固梁的裂缝开展和破坏模式有重要影响,但对FRP加固梁抗剪强度及尺寸效应的影响研究较少.采用三维细观数值模拟方法,考虑混凝土细观组成的非均质性及碳纤维布(CFRP)与混凝土之间的相互作用,建立了CFRP加固无腹筋钢筋混凝土梁剪切破坏力学分析模型.在验证细观模拟方法合理性的基础上,拓展模拟与分析了剪跨比...  相似文献   

6.
This paper presents the shear performance of reinforced concrete (RC) beams with T-section. Different configurations of externally bonded carbon fiber-reinforced polymer (CFRP) sheets were used to strengthen the specimens in shear. The experimental program consisted of six full-scale, simply supported beams. One beam was used as a bench mark and five beams were strengthened using different configurations of CFRP. The parameters investigated in this study included wrapping schemes, CFRP amount, 90°/0° ply combination, and CFRP end anchorage. The experimental results show that externally bonded CFRP can increase the shear capacity of the beam significantly. In addition, the results indicated that the most effective configuration was the U-wrap with end anchorage. Design algorithms in ACI code format as well as Eurocode format are proposed to predict the capacity of referred members. Results showed that the proposed design approach is conservative and acceptable.  相似文献   

7.
进行了6根碳纤维布加固已承受荷载的钢筋混凝土梁和2根对比混凝土梁的抗弯性能试验研究,分析了碳纤维布加固已承受荷载的钢筋混凝土梁的破坏机理,研究了荷载历史对加固梁极限荷载的影响。试验结果表明,粘贴碳纤维布可以有效地提高加固梁的抗弯承载能力。无论荷载历史如何,只要梁承受的初始荷载相同,梁破坏时的极限荷载基本相同。梁端锚固对加固梁的极限荷载影响不明显。根据不同的破坏模式,提出了碳纤维布加固已承受荷载的钢筋混凝土梁的承载力计算方法,给出了工程实用计算公式。  相似文献   

8.
为解决纯粘贴U形纤维增强聚合物基复合材料(FRP)加固钢筋混凝土梁中FRP端部容易发生剥离破坏等问题,自主研发了对纤维布条带端部进行自锁锚固的方法和锚板,提出了端锚与粘贴并用的混锚U形条带抗剪加固方法。通过2根未加固梁、1根纯粘贴和2根混锚U形碳纤维增强聚合物基复合材料(CFRP)带抗剪加固梁的对比试验,证实了混锚抗剪加固的有效性:混锚能够对纤维带端部进行可靠锚固,阻止端部剥离破坏的发生,实现纤维拉断破坏,大幅度提高材料强度利用率。混锚加固在抑制混凝土梁斜裂缝开展、延缓箍筋屈服、提高箍筋和CFRP的极限应变以及提高抗剪承载力等多个方面的表现均明显优于纯粘贴加固。  相似文献   

9.
金浏  张江兴  李冬  杜修力 《工程力学》2022,39(12):31-40
采用同时考虑混凝土材料非均质性、钢筋与混凝土之间的相互作用以及CFRP布与混凝土之间的相互作用影响的三维细观数值模拟方法,建立了CFRP布加固RC梁剪切破坏力学分析模型。在验证了细观数值方法合理性的基础上,设计并建立了12根CFRP布加固RC梁细观模型,探究相同CFRP配纤率(用布量)前提下,不同CFRP布加固方案对单调荷载作用下RC梁的剪切性能及尺寸效应的影响。结果表明:CFRP布应变分布与裂缝位置紧密相关,越靠近裂缝位置的CFRP布应变越大,提供的抗剪贡献越多;在CFRP配纤率一致的前提下,CFRP布宽度大厚度小的加固方案优于CFRP布厚度大宽度小的加固方案;CFRP布U型加固RC梁剪切强度存在尺寸效应现象,但相同CFRP配纤率下,不同CFRP布加固方案对名义抗剪强度尺寸效应的影响较小,可以忽略。  相似文献   

10.
The behaviour of damaged concrete beams strengthened by externally bonded steel plates is experimentally investigated. The study includes an investigation of the mode of failure, including flexural failure and the interface separation of the steel plate. Simply supported beams under monotonically increasing loads are considered exclusively. A total of five plain concrete beams externally reinforced with bonded steel plates were tested under static loads to determine their strength and behaviour. The variables tested were the thickness of the external steel plate, length and location of the interfacial crack, and the degree of surface preparation of the steel plate. In all five beams the thickness of adhesive was kept constant. The results indicate that (i) the behaviour of a damaged open sandwich beam is similar to that of a singly reinforced concrete beam when no debonding occurs between the concrete and the adherent steel plate; (ii) when debonding occurs, the failure is sudden and at loads smaller than for a case where failure is either by yielding of steel or crushing of concrete; (iii) the case with an interfacial crack between the steel and the adhesive is more critical than the case when the interfacial crack is between the adhesive and the concrete; and (iv) the failure load and the mode of failure are dependent on the degree of surface preparation of the steel plate. Analytical investigation to predict the interfacial debonding is summarized, and the results suggest that linear elastic fracture mechanics is suited for predicting the failure load for open sandwich beams which fail by interface debonding.  相似文献   

11.
Carbon and glass fiber reinforced polymer (CFRP and GFRP) are two materials suitable for strengthening the reinforced concrete (RC) beams. Although many in situ RC beams are of continuous constructions, there has been very limited research on the behavior of such beams with externally applied FRP laminate. In addition, most design guidelines were developed for simply supported beams with external FRP laminates. This paper presents an experimental program conducted to study the flexural behavior and redistribution in moment of reinforced high strength concrete (RHSC) continuous beams strengthened with CFRP and GFRP sheets. Test results showed that with increasing the number of CFRP sheet layers, the ultimate strength increases, while the ductility, moment redistribution, and ultimate strain of CFRP sheet decrease. Also, by using the GFRP sheet in strengthening the continuous beam reduced loss in ductility and moment redistribution but it did not significantly increase ultimate strength of beam. The moment enhancement ratio of the strengthened continuous beams was significantly higher than the ultimate load enhancement ratio in the same beam. An analytical model for moment–curvature and load capacity are developed and used for the tested continuous beams in current and other similar studies. The stress–strain curves of concrete, steel and FRP were considered as integrity model. Stress–strain model of concrete is extended from Oztekin et al.’s model by modifying the ultimate strain. Also, new parameters of equivalent stress block are obtained for flexural calculation of RHSC beams. Good agreement between experiment and prediction values is achieved.  相似文献   

12.
A Near Surface Mounted (NSM) strengthening technique was developed to increase the shear resistance of concrete beams. The NSM technique is based on fixing, by epoxy adhesive, Carbon Fiber Reinforced Polymer (CFRP) laminates into pre-cut slits opened in the concrete cover of lateral surfaces of the beams. To assess the efficacy of this technique, an experimental program of four-point bending tests was carried out with reinforced concrete beams failing in shear. Each of the four tested series was composed of five beams: without any shear reinforcement; reinforced with steel stirrups; strengthened with strips of wet lay-up CFRP sheets, applied according to the externally bonded reinforcement (EBR) technique; and two beams strengthened with NSM precured laminates of CFRP, one of them with laminates positioned at 90° and the other with laminates positioned at 45° in relation to the beam axis. Influences of the laminate inclination, beam depth and longitudinal tensile steel reinforcement ratio on the efficacy of the strengthening techniques were analyzed. Amongst the CFRP strengthening techniques, the NSM with laminates at 45° was the most effective, not only in terms of increasing beam shear resistance but also in assuring larger deformation capacity at beam failure. The NSM was also faster and easier to apply than the EBR technique. The performance of the ACI and fib analytical formulations for the EBR shear strengthening was appraised. In general, the contribution of the CFRP systems predicted by the analytical formulations was slightly larger than the values registered experimentally. Performance of the formulation by Nanni et al. for NSM strengthening technique was also appraised. Using bond stress and CFRP effective strain values obtained in pullout bending tests with NSM CFRP laminate system, the formulation by Nanni et al. predicted a contribution of this CFRP system for the beam shear resistance of 72% the experimentally recorded values.  相似文献   

13.
This paper presents the results of an experimental study of the short- and long-term behavior of low-strength reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP). A numerical analysis model was developed and verified for the calculation of the long-term deflection and maximum allowable long-term load of such RC beams. A parametric study was also conducted and it was found that the maximum allowable long-term load of a CFRP-strengthened beam was dominated by the deflection of RC beam when the cubic compressive strength of concrete was less than a certain value. For concrete of higher strength, the maximum allowable long-term load was dominated by the stress levels of the steel bars. It was also found that the yielding load of the strengthened beams increased significantly with areas strengthened by CFRP sheets and steel bars, while the maximum allowable long-term load only increased slightly.  相似文献   

14.
《Composites Part B》2013,45(1):604-612
This paper presents experimental research on reinforced concrete (RC) beams with external flexural and flexural–shear strengthening by fibre reinforced polymer (FRP) sheets consisting of carbon FRP (CFRP) and glass FRP (GFRP). The work carried out has examined both the flexural and flexural–shear strengthening capacities of retrofitted RC beams and has indicated how different strengthening arrangements of CFRP and GFRP sheets affect behaviour of the RC beams strengthened. Research output shows that the flexural–shear strengthening arrangement is much more effective than the flexural one in enhancing the stiffness, the ultimate strength and hardening behaviour of the RC beam. In addition theoretical calculations are developed to estimate the bending and shear capacities of the beams tested, which are compared with the corresponding experimental results.  相似文献   

15.
This paper aims to develop 3D nonlinear finite element (FE) models for reinforced concrete (RC) deep beams containing web openings and strengthened in shear with carbon fiber reinforced polymer (CFRP) composite sheets. The web openings interrupted the natural load path either fully or partially. The FE models adopted realistic materials constitutive laws that account for the nonlinear behavior of materials. In the FE models, solid elements for concrete, multi-layer shell elements for CFRP and link elements for steel reinforcement were used to simulate the physical models. Special interface elements were implemented in the FE models to simulate the interfacial bond behavior between the concrete and CFRP composites. A comparison between the FE results and experimental data published in the literature demonstrated the validity of the computational models in capturing the structural response for both unstrengthened and CFRP-strengthened deep beams with openings. The developed FE models can serve as a numerical platform for performance prediction of RC deep beams with openings strengthened in shear with CFRP composites.  相似文献   

16.
杜青  蔡美峰  李晓会 《工程力学》2007,24(3):154-158,119
提出了外粘钢板加固受弯钢筋混凝土梁的非线性有限元模型。该模型中采用了一种特殊的、具有剥离破坏功能的界面单元来模拟混凝土梁和外粘钢板之间的粘结层,这种剥离破坏主要发生在粘贴钢板端部区域和弯曲、剪切裂缝附近。影响这种剥离破坏的主要因素有两个:一是粘贴钢板的端部与加固梁支座距离;二是粘贴钢板的厚度。传统的梁理论不能描述这种加固梁破坏模式,采用有限元方法能全方位地描述这种加固梁的各种性状和破坏模式。数值计算结果与粘贴不同厚度钢板加固梁的试验结果相吻合。  相似文献   

17.
Substantial research has been performed on the shear strengthening of reinforced concrete (RC) beams with externally bonded fibre reinforced polymers (FRP). However, referring to shear, many questions remain opened given the complexity of the failure mechanism of RC structures strengthened in shear with FRP. This paper is concerned with the development of a simple automatic procedure for predicting the shear capacity of RC beams shear strengthened with FRP. The proposed model is based on an extension of the strut-and-tie models used for the shear strength design of RC beams to the case of shear strengthened beams with FRP. By the formulation of an optimization problem solved by using genetic algorithms, the optimal configuration of the strut-and-tie mechanism of an FRP shear strengthened RC beam is determined. Furthermore, unlike the conventional truss approaches, in the optimal configuration, compressive struts are not enforced to be parallel, which represents more consistently the physical reality of the flow of forces. The proposed model is validated against experimental data collected from the existing literature and comparisons with predictions of some design proposals are also performed.  相似文献   

18.
Various methods are developed for strengthening reinforced concrete beams against shear. Nowadays, external bonding of various composite members to RC beams was very popular and successfully technique internationally. This study present test results on strengthening of shear deficient RC beams by external bonding of carbon fiber reinforced polymer (CFRP) straps. Six RC beams with a T section were tested under cyclic loading in the experimental program. Width of the CFRP straps, arrangements of straps along the shear span, and anchorage technique that were applied at the ends of straps was the main parameters that were investigated during experimental study. Inclined CFRP straps were bonded along the shear spans of shear deficient beams for strengthening against shear by using epoxy. Arrangements and width of the inclined CFRP straps were the main parameters that were changed among the specimens. The test results confirmed that all CFRP arrangements improved the strength and stiffness of the specimens significantly. The failure mode, and ductility of specimens were proved to differ according to the CFRP strap width and arrangement along the beam. Experimental results were compared with the analytical approaches that were suggested by ACI-440 Committee report.  相似文献   

19.
A series of experimental tests were carried out to investigate the behavior and performance of reinforced concrete (RC) T-section deep beams strengthened in shear with CFRP sheets. Key variables evaluated in this study were strengthening length, fiber direction combination of CFRP sheets, and an anchorage using U-wrapped CFRP sheets. A total of 14 RC T-section deep beams were designed to be deficient in shear with a shear span-to-effective depth ratio (a/d) of 1.22. Crack patterns and behavior of the tested deep beams were observed during four-point loading tests. Except the CS-FL-HP specimen, almost all strengthened deep beams showed a shear–compression failure due to partial delamination of the CFRP sheets. From the load–displacement (pu) curves, the effects of key variables on the shear performance of the strengthened deep beams were addressed. It was concluded from the test results that the key variables of strengthening length, fiber direction combination, and anchorage have significant influence on the shear performance of strengthened deep beams. In addition, a series of comparative studies between the present experimental data and theoretical results in accordance with the commonly applied design codes were made to evaluate the shear strength of a control beam and deep beams strengthened with CFRP sheets.  相似文献   

20.
This experimental study aims at investigating the behavior of reinforced concrete (RC) beams strengthened by unidirectional and hybrid bidirectional fiber-reinforced polymer (FRP) sheets and subjected to cyclic loading. RC beams tested under cycled loading were subsequently repaired using both epoxy injection and external FRP sheets, and then re-tested under monotonic loading. Six RC beam specimens, two of which were control specimens and four were shear deficient, were upgraded with side-bonded FRP sheets in the first phase of the experimental program. In the second phase, three of the damaged beams were repaired using epoxy injection and unidirectional carbon fiber polymer (CFRP) sheets. The repairing method, FRP type, and FRP wrapping scheme were the test variables investigated. Test results show that the repair schemes imparted significant mechanical improvements in terms of ultimate shear capacity and ductility. The simultaneous application of epoxy injection and externally bonded FRP sheets was found to be a highly effective repair technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号