首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradable copolymer poly(butylene succinate-co-terephthalate) (PBST), with 70 mol% butylene terephthalate (BT), was melt-spun into fibers with take-up velocity of 2 km/min. The mechanical and thermal properties of the as-spun fibers were investigated through tensile test, DSC and TGA. Compared to poly(butylene terephthalate) (PBT) fibers, PBST fibers exhibited lower initial tensile modulus and higher tensile elongation at break which indicated their better flexibility. DSC results showed high melting temperature (ca.180.7 °C) of PBST fibers helpful to the textile processing compared to other biodegradable polyesters. Furthermore, isothermal crystallization behaviors of PBST fibers at low and high supercoolings were investigated by DSC and DLI, respectively. The measurement of crystallization kinetics at low supercoolings indicated that Avrami exponent n for PBST fibers was at a range of 2.9 to 3.3, corresponding to the heterogeneous nucleation and a 3-dimensional spherulitic growth. Similar results were given for isothermal crystallization behavior at high supercoolings investigated by DLI technique. Additionally, the equilibrium melting temperature of PBST fibers was obtained for 206.5 °C by Hoffman-Weeks method. Further investigation through DLI measurement provided the temperature at maximum crystallization rate for PBST fibers located at about 90 °C, which was very useful to polymer processing.  相似文献   

2.
The effects of transesterification on the miscibility of polycarbonate (PC)/poly(butylenes adipate-co-terephthalate) (PBAT) blends were investigated. The PC/PBAT blends were prepared with a twin-screw extruder, and then annealed at 260 °C for 5 h to trigger the transesterification reaction. 1H NMR, FT-IR, and WAXD results indicated that transesterification in the annealed PC/PBAT blends took place and led to the formation of a random copolymer structure. Because the copolymer serves as a compatibilizer, the PC/PBAT blends showed improved miscibility, as confirmed by FE-SEM and DMA analyses. The compatible morphology achieved through transesterification ultimately increased the thermal stability of the PC/PBAT blends. We could thus conclude that transesterification in PC/PBAT blends forms a random copolymer which plays an important role as a compatibilizer and consequently improves the miscibility as well as the thermal properties of the blends.  相似文献   

3.
Biodegradable polymer blends of poly(l-lactic acid) (PLLA) and poly(butylene succinate-co-l-lactate) (PBSL) at various blending ratios are prepared. The blending of PLLA with PBSL results in an increase in the ductility and thermal stability of the blend. However, flexural strength and modulus, as well as loss modulus, decrease with an increase in PBSL content. Annealing is employed to increase blend crystallinity and subsequently improve the mechanical properties of the PLLA/PBSL blend. The influences of annealing time on the crystal modification, thermal properties, and mechanical properties of the PLLA/PBSL blend are investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and three-point bending test, respectively. Crystalline peaks are found in the XRD patterns of all annealed samples. DSC analysis reveals that the degree of crystallinity is enhanced with an increase in annealing time. The flexural modulus also increases with annealing time due to the change in crystalline phases. However, longer periods of annealing, especially over 20 h, result in thermal degradation and subsequently reduce the modulus value of the PLLA/PBSL blend.  相似文献   

4.
High-velocity sedimentation, translational isothermal diffusion, and viscometry in H2O and DMF are used to investigate the samples and fractions of poly(N-methyl-N-vinylacetamide) synthesized by free-radical polymerization and fractionated in a chloroform-diethyl ether system. Molecular masses M and the Mark-Kuhn-Houwink-Sakurada relations are obtained for the fractions in the molecular mass range M × 10−3 = 3.5−540.0. The negative temperature coefficient of intrinsic viscosity is revealed for both solvents. The length of the Kuhn statistical segment and the hydrodynamic diameter of poly(N-methyl-N-vinylacetamide) macromolecules are estimated; the hydrodynamic volumes occupied by water-soluble poly(N-methyl-N-vinylacetamide), poly(1-vinyl-2-pyrrolidone), poly(vinylformamide), and pullulan molecules are compared.  相似文献   

5.
A series of poly(d,l-lactide-co-glycolide) (PLGA) polymers with various molecular weight were synthesized by a ring-opening polymerization method using stannous 2-ethyl hexanoate (Sn(Oct)2) as the catalyst. The molecular weight of these polymers was controlled in a novel way, using t-butyldimethylsilanol (TBDS) or triphenylsilanol (TPS). The silicon-end group attached to the PLGA copolymer was removed at room temperature using either hydrochloric acid (HCl) or trifluoroacetic acid (TFA). The structures of these polymers before and after end group removal were characterized by 1HNMR spectroscopy, while the molecular weight and polydispersity index (PDI) were determined by viscosity method and gel permeation chromatography (GPC). The residual amounts of stannum in PLGA and the glass transition temperature (T g) of copolymer before and after end group removal were determined by the atomic absorption spectrum (AAS) and differential scanning calorimetry (DSC), respectively. The results showed that the removal method was effective. This study demonstrated that the molecular weight of PLGA could be easily controlled by altering the monomers/silanol molar ratio and the molecular weight and the purity of PLGA copolymer materials after silicon-end group removal could meet the demand of drug release.  相似文献   

6.
A metal-chelating superabsorbent hydrogel based on poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylic acid-co-acrylamide) grafted onto sodium alginate backbone, NaAlg-g-poly(AMPS-co-AA-co-AM) is prepared under microwave irradiation. The Taguchi method is used for the optimization of synthetic parameters of the hydrogel based on water absorbency. The Taguchi L9 (34) orthogonal array is chosen for experimental design. Mass concentrations of crosslinker MBA \(C_{\text{MBA}}\) initiator KPS \(C_{\text{KPS}}\), sodium alginate \(C_{\text{NaAlg}}\) and mass ratio of monomers \(C_{\text{AM/AA/AMPS}}\) are chosen as four factors. The analysis of variance of the test results indicates the following optimal conditions: 0.8 g L?1 of MBA, 0.9 g L?1 of KPS, 8 g L?1 of NaAlg and \(R_{\text{AM/AA/AMPS}}\) equals to 1:1.1:1.1. The maximum water absorbency of the optimized final hydrogel is found to be 822 g g?1. The relative thermal stability of the optimized hydrogel in comparison with sodium alginate is demonstrated via thermogravimetric analysis. The prepared hydrogel is characterized by FTIR spectroscopy and scanning electron microscopy. The influence of the environmental parameters on water absorbency such as the pH and the ionic force is also investigated. The optimized hydrogel is used as adsorbent for hazardous heavy metal ions Pb(II), Cd(II), Ni(II) and Cu(II) and their competitive adsorption is also discussed. Isotherm of adsorption and effect of pH, adsorption dosage and recyclability are investigated. The results show that the maximum adsorption capacities of lead and cadmium ions on the hydrogel are 628.93 and 456.62 mg g?1, respectively. The adsorption is well described by Langmuir isotherm model. The hydrogel is also utilized for the loading of potassium nitrate as an active agrochemical agent and the release of this active agent has also been investigated.  相似文献   

7.
In this study, N-isopropylacrylamide-based temperature and pH-sensitive hydrogels were synthesized by free radical polymerization for removal of cationic dyes from aqueous solutions. For this purpose, N-isopropylacrylamide was copolymerized with various amounts of sodium salt of itaconic acid in the presence of crosslinking agent (N,N-methylene bisacrylamide). The chemical structures of hydrogels were characterized by FT-IR analysis. In order to investigate swelling properties of the hydrogels, water absorption (swelling) and shrinking (deswelling) kinetics, the equilibrium swelling ratios in water and different pH buffer solutions, and the temperature dependent swelling ratios were determined. Then, their adsorption properties such as adsorption capacities, kinetics, isotherms were investigated in case of their usage in removal of Safranine T (ST), Brilliant Green (BG), and Brilliant Cresyl Blue (BCB) aqueous solutions. According to adsorbed dye amount, the adsorption capacities are followed the order BG > ST ≅ BCB. In addition, the results indicated that the pseudo-second-order kinetic model fitted better than the data obtained from pseudo-first-order model for the adsorption of all dyes onto hydrogels. Furthermore, according to effect of the initial dye concentration findings, it is concluded that, Freundlich isotherm explains the adsorption better than Langmuir isotherm.  相似文献   

8.
Compatibilizer plays very important roles in preparing high performance polymer composites, not only for the ternary immiscible polymer blends, but also for the recycled and reused of waste plastics mixture. Generally, the compatibilizers can be used as the toughening agent in blending polymer materials. In the present work, the poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) or maleic anhydride-grafted poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS-g-MA) acts as the compatibilizer and toughening agent for the preparation of R-PET/LDPE/SEBS (70/20/10) ternary blends. It must be pointed that the ternary blends are costlessly and conveniently prepared from the recycled poly(ethylene terephthalate) (R-PET) and linear low density polyethylene (LLDPE) through a melt blending in a co-rotating twin-screw extruder and injection moulded. The morphologies of the ternary blends are characterized by scanning electron microscopy (SEM). It was found that the blends contains reactive or non-reactive compatibilizer, the morphology originates from the LLDPE particles encapsulated by both SEBS and SEBS-g-MA. So, it results to the reduced interfacial tension between of the R-PET and SEBS-g-MA, in which the grafted chains of PET-g-SEBS-g-MA formed through in situ reaction between R-PET and SEBS-g-MA phases. Therefore, core–shell particles with smaller diameter disperse uniformly in the blends. Moreover, the good compatibilization and corresponding morphologies induce in balanced mechanical and thermal properties. DSC analysis show the dispersed phase particles could act as nucleating agent in the R-PET matrix, which results the improvement of the crystallization temperature. And it was also observed the decreased nucleation activity in graft copolymers in the R-PET/LLDPE/SEBS-g-MA blends. Notched Charpy impact strength and elongation at break are improved by the addition of compatibilizer.  相似文献   

9.
Poly(ethylene adipate-co-l-lactic acid) (PLEA) copolymers were prepared via ring opening polymerization from l-lactide and hydroxyl terminated poly(ethylene adipate) prepolymer as starting materials. The composition and microstructure of the PLEA copolymers were characterized by nuclear magnetic resonance (1H NMR) spectra. Results confirmed the incorporation of lactic acid segments into the chain of PLEA copolymers as well as the existence of ester exchange reaction. The thermal behaviors and thermal stability of the resultant PLEA copolymers were evaluated by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA), respectively; and the crystal structure was confirmed by using wide-angle X-ray diffraction (WAXD). Results showed that those properties of the PLEA copolymers showed high dependence on the composition of the copolymers.  相似文献   

10.
Here, we report the successful synthesis of series of stimuli responsive amphiphilic diblock copolymers (SRABCs) poly(N-isopropylacrylamide-b-N-vinylcarbazole) [poly(NIPAAm-b-NVK)] through reversible addition fragmentation chain transfer (RAFT) polymerization. Copolymers with fixed hydrophilic [poly(NIPAAm)] block length and variable (with three different) hydrophobic [poly(NVK)] block lengths were synthesized and the block length ratio was confirmed from their molecular weight data. The self-assembly nature of synthesized block copolymers was confirmed by determining critical micelle concentration (CMC). Self-assembled block copolymers showed rice-grain like morphology for copolymers having equivalent hydrophobic/hydrophilic chain length but in case of block copolymers having smaller and bigger hydrophobic chain length with respect to hydrophilic chain length displayed vesicular morphology. The thermo and pH responsiveness of the block copolymers was found to be influenced by variation in length and chemical composition of the blocks. Due to their thermo and pH responsiveness resulted self-assembled structures underwent morphology transitions from vesicular and rice grain like to micellar structure in aqueous medium. The probable applications of the studied stimuli responsive amphiphilic diblock copolymers can be found in the nanotechnology and biotechnology are indicated.
Graphical abstract Synthesis, self-assembly and stimuli responsiveness of poly(NIPAAm-b-NVK) copolymers.
  相似文献   

11.
A series of cross-linked glycidyl azide polymer with poly(ethylene oxide-co-tetrahydrofuran) (GAP/P(EO-co-THF)) blends were prepared by varying the relative weight ratios of GAP to P(EO-co-THF) using poly-isocyanate mixed curing system (N100/TDI), and by varying the [NCO]/[OH] ratios to find the effects of curing agents on mechanical properties. The compatibility, thermal features and morphological studies of GAP/P(EO-co-THF) polymer networks were described by equilibrium phase diagram, differential scanning calorimeters (DSC) together with thermogravimetric analysis (TGA), scanning electron microscopy (SEM), respectively. The equilibrium phase figure of the partial miscibility system for GAP/P(EO-co-THF) shows that the system has a lower critical solution temperature (LCST). In addition, the DSC and TGA results indicate that the content of two components is gradually approaching, and the glass transition temperatures of GAP/P(EO-co-THF) blends are less than those of the pure GAP and P(EO-co-THF) polymers, and the initial decomposition temperature and the maximum decomposition rate temperature have greatly increased. Furthermore, the thermal decomposition behavior indicates that the thermal stabilities are improved and the physical entangled networks are strengthened. Moreover, the scanning electron microscopy (SEM) images show the GAP/P(EO-co-THF) blends form a certain polymer alloy structure, which is the reason for the improved thermal stabilities and the strengthened networks.  相似文献   

12.
N‐Dodecyl‐N,N‐di(2‐hydroxyethyl) amine oxide (C12DHEAO) and N‐stearyl‐N,N‐di(2‐hydroxyethyl) amine oxide (C18DHEAO) were synthesized with N‐alkyl‐diethanolamine and hydrogen peroxide. Their chemical structures were confirmed using 1H‐NMR spectra, mass spectral fragmentation and FTIR spectroscopic analysis. It was found that C12DHEAO and C18DHEAO reduced the surface tension of water to a minimum value of approximately 28.75 mN m?1 at concentration of 2.48 × 10?3 mol L?1 and 32.45 mN m?1 at concentration of 5.21 × 10?5 mol L?1, respectively. The minimum interfacial tension (IFTmin) and the dynamic interfacial tension (DIT) of oil–water system were measured. When C18DHEAO concentration was in the range of 0.1–0.5%, the IFTmin between liquid paraffin and C18DHEAO solutions all reached the ultra‐low interfacial tension. Furthermore, their foam properties were investigated by Ross‐Miles method, and the height of foam of C12DHEAO was 183 mm. It was also found that they showed strong emulsifying power.  相似文献   

13.
Blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with 12 mol% hydroxyvalerate (HV) content and epoxidized natural rubber (ENR) with 50 mol% epoxidation level were studied along with the thermal properties and morphologies. Glass transition temperatures reveal immiscibility of the polymers over the entire composition range. The equilibrium melting point (T m0) of PHBV in blends was determined applying Hoffman–Weeks step-wise annealing procedure. There is no significant variation of T m0 for PHBV with blend composition. Also the crystallinity of PHBV stays approximately constant in the blends, only a slight decrease might be recognized with increasing ENR content. The rate of crystallization of PHBV decreases with PHBV content according to a power law. Morphological studies by polarizing optical microscopy reveal a fine intraspherulitic dispersion of ENR in volume-filling PHBV spherulites, which develop during isothermal crystallization.  相似文献   

14.
Measurements of mechanical and thermal transport properties have been made on the blends of cis-polyisoprene (CPI) and trans-polyisoprene (TPI) prepared by a solution casting method. Characterization of these blends has been done using wide angle X-ray scattering. Thermo-mechanical, mechanical, and thermal transport properties have been determined employing dynamic mechanical analyzer (DMA) and transient plane source. Storage modulus and tan δ as determined from DMA have been found to increase and decrease with the increase in TPI content, respectively. Mechanical properties such as Young’s modulus and tensile strength, as determined from strain–stress behavior of CPI/TPI blends, have been found to increase with increasing TPI content. This increase in properties has been explained on the basis of the crosslink density, calculated using theory of rubber elasticity. Thermal transport properties such as thermal conductivity, thermal diffusivity, and volumetric heat capacity are higher for all the three blends as compared to their pure components.  相似文献   

15.
The sex pheromone of Phyllophaga (Phytalus) georgiana was characterized as valine methyl ester, tentatively the l-enantiomer. This is the first sex pheromone identified from the Phyllophaga subgenus Phytalus. The pheromone was extracted from female glands, the active component isolated by coupled gas chromatography–electroantennogram detection analysis, characterized by mass spectrometry, and shown to be active in field tests. The seasonal flight pattern was determined for P. georgiana as well as for three other species, P. anxia (both northern and southern genitalic forms), P. gracilis, and P. postrema. The latter three species were captured in traps baited with l-isoleucine methyl ester. Sridhar Polavarapu, deceased May 7, 2004. We dedicate this publication to our friend and colleague.  相似文献   

16.
Novel bioengineering copolymers were synthesized by radical copolymerization of N-isopropylacrylamide (NIPA) and 3,4-2H-dihydropyran (DHP) with 2,2′-azobisisobutyronitrile as an initiator in acetone solution at 70 °C under nitrogen atmosphere. Structure, tacticity and compositons of the copolymers prepared in a wide range of monomer feed were confirmed by FTIR, 1H{13C} NMR-DEPT and elemental analyses. The monomer reactivity ratios (r 1 and r 2) were detected using known two methods: r 1 (NIPA)?=?1.25 and r 2?=?0.035 (DHP), and r 1 (NIPA) ?=?0.97 and r 2?=?0.022 (DHP) by Kelen-Tüdös and Jaacks methods, respectively. It was demonstrated that the studied monomer pair has a tendency to form H-bonding beween amide/ether groups through ?NH...O< complexation which played an important role in the stereoselective chain growth, and significant decrease of allyl degradative chain transfer reactions. This phenomenon is also confirmed by the observed relatively high molecular weights of copolymers (M v ). The synthesized water-soluble stimuli-responsive poly(NIPA-co-DHP)s exhibit thermal stability, higher glass-transition temperature, polyelectrolyte, pH- and temperature-sensitive behavior and can be attributed to the class of bioengineering functional copolymers useful for various bio- and gene-engineering, and drug delivery applications.  相似文献   

17.
High functional ophthalmic lens materials, poly(HEMA-co-MMA)s, were prepared by the copolymerization of HEMA, MMA, NVP, EDGMA, and N,N-dimethylacrylamide in the presence of silver nanoparticles. Silver nanoparticles have antimicrobial properties and a hydrophilic monomer N,N-dimethylacrylamide has excellent biocompatibility and oxygen transmissibility. The water content was in the range of 36.63–44.45%, indicating the characteristics of general water-content contact lenses, and the refractive index was measured to be in the range of 1.423–1.435. Meanwhile, the oxygen transmissibility ranged from 10.63×10−11 to 18.85×10−11 (cm2/sec)(mlO2/ml×mmHg) increasing with increasing the addition ratio of N,N-dimethylacrylamide. The polymeric materials satisfied the basic characteristics required for ophthalmic contact lenses. The polymers can be used to fabricate antimicrobial hydrogel contact lenses with high oxygen transmissibility.  相似文献   

18.
Sorafenib-incoporated nanoparticles were prepared using a block copolymer that is composed of dextran and poly(DL-lactide-co-glycolide) [DexbLG] for antitumor drug delivery. Sorafenib-incorporated nanoparticles were prepared by a nanoprecipitation-dialysis method. Sorafenib-incorporated DexbLG nanoparticles were uniformly distributed in an aqueous solution regardless of the content of sorafenib. Transmission electron microscopy of the sorafenib-incorporated DexbLG nanoparticles revealed a spherical shape with a diameter < 300 nm. Sorafenib-incorporated DexbLG nanoparticles at a polymer/drug weight ratio of 40:5 showed a relatively uniform size and morphology. Higher initial drug feeding was associated with increased drug content in nanoparticles and in nanoparticle size. A drug release study revealed a decreased drug release rate with increasing drug content. In an in vitro anti-proliferation assay using human cholangiocarcinoma cells, sorafenib-incorporated DexbLG nanoparticles showed a similar antitumor activity as sorafenib. Sorafenib-incorporated DexbLG nanoparticles are promising candidates as vehicles for antitumor drug targeting.  相似文献   

19.
Nitroso compounds were electrogenerated from (1S, 2S)-2-amino-1-(4-nitrophenyl)-propane-1,3-diol derivatives (derivatives of p-nitrophenylserinol) in a “redox” flow cell equipped with two consecutive porous electrodes of opposite polarities. In spite. of the relative instability in methanol-acetate buffer of the hydroxylamine intermediates produced at the first porous electrode (cathode), the nitroso derivatives were prepared in good yields at the second one (anode). A coupling reaction between some nitroso derivatives and p-toluenesulphinic acid led to N-sulphonylphenylhydroxylamines.  相似文献   

20.
The chitosan Schiff bases were synthesised through the condensation reaction of chitosan with o-, m- and p-nitrobenzaldehyde (abbreviated as CSB-o, CSB-m and CSB-p) in the ratio 1:1 and were characterised by means of FTIR, UV, XRD and SEM. The thermal dehydration and degradation kinetics of all these Schiff bases were studied using different isoconversional and maximum rate (peak) methods, viz. Kissinger–Akahira–Sunose (KAS), Tang, Starink, Flynn–Wall–Ozawa (FWO) and Bosewell from DSC data and the thermal stability from TG. The activation energy values of thermal dehydration and degradation reactions obtained from isoconversional methods of FWO and Bosewell are slightly higher than that obtained from other methods. All the isoconversional and maximum rate (peak) methods yielded consistent values of E α for both the dehydration and degradation reactions and is in the order CSB-o < CSB-m < CSB-p. The Schiff bases observed (from TG) the same order of thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号