首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel polymeric cationic surfactants based on low molecular weight chitosan (LWCS) and 3‐chloro‐2‐hydroxypropyl dimethyl dehydroabietyl ammonium chloride (CHPDMDHA), LWCS‐g‐CHPDMDHA, were obtained by the grafting modification of LWCS with CHPDMDHA as grafting agent. The structure of LWCS‐g‐CHPDMDHA was confirmed by FT‐IR and 1H NMR, and the degree of quaternizing substitution (DS) of LWCS‐g‐CHPDMDHA was determined according to the results of elemental analysis. The aggregation behavior and surface activities of LWCS‐g‐CHPDMDHA in aqueous solution were investigated by transmission electron microscopy (TEM) and determination of surface tension, respectively. The experimental results showed that the DS and molecular weight (Mw) of LWCS have significant influence on the critical micelle concentrations (CMC) and the surface tensions at the CMC (γcmc). The shape of aggregates changed with the variation of concentration of LWCS‐g‐CHPDMDHA in aqueous solution. When the LWCS‐g‐CHPDMDHA was utilized as an emulsifier, the increase of DS of LWCS‐g‐CHPDMDHA and Mw of LWCS were favorable for improving the stability of emulsions composed of water and benzene.  相似文献   

2.
Allyl dimethyl dehydroabietyl ammonium chloride (ADMDHA), as a cationic quaternary ammonium polymerizable antibacterial surfactant, was synthesized from dehydroabietylamine and 3‐chloropropene. The structure of ADMDHA was characterized by FT‐IR, NMR, and elemental analysis. The critical micelle concentration (CMC) of ADMDHA and the surface tension at the CMC (γCMC) in aqueous solution were about 2.51 × 10?4 mol L?1 and 28.5 mN m?1 at 25 °C, respectively. The emulsion consisting of benzene and water with ADMDHA as an emulsifier maintained its stability for 2 days. Meanwhile, the antimicrobial activities of ADMDHA against Escherichia aerogenes and Pseudomonas aeruginosa were much stronger than those of ampicillin sodium and bromogeramine against the same bacteria.  相似文献   

3.
A new type of amphiphilic quaternary ammonium chitosan derivative, 2‐N‐carboxymethyl‐6‐O‐diethylaminoethyl chitosan (DEAE–CMC), was synthesized through a two‐step Schiff base reaction process and applied to drug delivery. In the first step, benzaldehyde was used as a protective agent for the incorporation of diethylaminoethyl groups to form the intermediate (6‐O‐diethylaminoethyl chitosan). On the other hand, NaBH4 was used as a reducing agent to reduce the Schiff base, which was generated by glyoxylic acid, for the further incorporation of carboxymethyl groups to produce DEAE–CMC. The structure, thermal properties, surface morphology, and diameter distribution of the resulting chitosan graft copolymers were characterized by Fourier transform infrared spectroscopy, 1H‐NMR, thermogravimetric analysis, differential scanning calorimetry, X‐ray powder diffraction, scanning electron microscopy, and laser particle size analysis. Benefiting from the amphiphilic structure, DEAE–CMC was able to be formed into microspheres in aqueous solution with an average diameter of 4.52 ± 1.21 μm. An in vitro evaluation of these microspheres demonstrated their efficient controlled release behavior of a drug. The accumulated release ratio of vitamin B12 loaded DEAE–CMC microspheres were up to 93%, and the duration was up to 15 h. The grafted polymers of DEAE–CMC were found to be blood‐compatible, and no cytotoxic effect was shown in human SiHa cells in an MTT [3‐(4, 5‐dimethyl‐thiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide] cytotoxicity assay. These results indicate that the DEAE–CMC microspheres could be used as safe, promising drug‐delivery systems. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39890.  相似文献   

4.
Dodecyl diphenyl oxide disulfonate with different counterions (C12MADS‐M, M = Na, Mg, Ca) were synthesized using dodecyl alcohol, diphenyl oxide and SO3 as reagents through alkylation–sulfonation–neutralization. The structure of the product was characterized by infrared spectroscopy and electrospray ionization‐mass spectrometry. The surface and interfacial prosperities were investigated. The critical micelle concentration (CMC) of C12MADS‐Na, C12MADS‐Mg and C12MADS‐Ca was 1.23 × 10?3, 5.25 × 10?4 and 5.37 × 10?4 mol/L, respectively. The surface tension at CMC (γCMC) of C12MADS‐Na, C12MADS‐Mg and C12MADS‐Ca was 43.2, 37.1 and 36.6 mN/m, respectively. Interfacial tensions between crude oil and C12MADS‐M aqueous solution gave only a small change in the calcium chloride concentrations ranging from 50 to 10,000 mg/L.  相似文献   

5.
A cationic Gemini surfactant with a benzene ring (abbreviated as C14‐CGB) was synthesized in 2 steps with aniline, epichlorohydrin, and N,N‐dimethyltetradecylamine as starting materials. This product was characterized using mass spectroscopy and nuclear magnetic resonance (1H NMR). The critical micelle concentration (CMC) and surface tension (γcmc) of C14‐CGB were measured from 298 to 313 K and thermodynamic parameters of micellization were calculated. The results showed that the CMC and γcmc were 1.269 × 10?3 mol L?1 and 38.33 mN m?1 at 298 K, respectively. Moreover, upon increasing the temperature, the CMC increases, γcmc decreases, the maximum surface adsorption capacity (Γmax) decreases, and the minimum molecular area (Amin) increases. The emulsified asphalt test showed that C14‐CGB is a slow‐breaking asphalt emulsifier exhibiting excellent emulsifying ability.  相似文献   

6.
Three series of nonionic surfactants derived from polytriethanolamine containing 8, 10, and 12 units of triethanolamine were synthesized. Structural assignment of the different compounds was made on the basis of FTIR and 1H‐NMR spectroscopic data. The surface parameters of these surfactants included critical micelle concentration (CMC), surface tension at the CMC (γCMC), surfactant concentration required to reduce the surface tension of the solvent by 20 mN m?1 (pC20), maximum surface excess (Γmax), and the interfacial area occupied by the surfactant molecules (Amin) using surface tension measurements. The micellization and adsorption free energies were calculated at 25 °C.  相似文献   

7.
A series of novel cationic gemini surfactants with rigid amido groups inserted as the spacers, named C 12 ‐PPDA‐C 12 , C 14 ‐PPDA‐C 14 and C 16 ‐PPDA‐C 16 , were synthesized by a two‐step reaction with dimethyl terephthalate, N,N‐dimethyl propylene diamine and alkyl bromide as raw materials. The chemical structures of the prepared compounds were confirmed by IR, 1H and 13C NMR and element analysis. Surface activity properties of the synthesized compounds were investigated by surface tension, electrical conductivity and fluorescence. Increasing the number of carbon atoms in the hydrophobic alkyl chain, decreased the critical micelle concentration (CMC), surface tension at the CMC and the minimum surface area. Other relevant properties including foaming ability and emulsion stability were investigated. The results indicated that the synthesized gemini surfactants possess good surface properties, emulsifying properties and steady foam properties.  相似文献   

8.
A new synthetic route to a mild surfactant disodium lauryl glucoside sulfosuccinate (AG‐SS) containing two hydrophilic groups is described and its measured physicochemical properties reported. AG‐SS was synthesized from lauryl glucoside reacted with maleic acid anhydride, and then sulfonated with sodium sulfite. The structure and composition of the product were defined by Fourier transform infrared spectroscopy and liquid chromatography–mass spectrometry. The surface activity measurement showed that the critical micelle concentration (CMC) and that the surface tension at CMC (γCMC) of AG‐SS were 2.59 × 10?4 mol/L and 35.21 mN/m at 25 °C, respectively. AG‐SS exhibited excellent water solubility eliminating the disadvantage of lauryl glucoside; its foaming ability was also remarkable.  相似文献   

9.
Four novel wholly para‐oriented aromatic polyamide‐hydrazides containing flexibilizing sulfone‐ether linkages in their main chains have been synthesized from 4‐amino‐3‐hydroxy benzhydrazide (4A3HBH) with either 4,4′‐sulfonyldibenzoyl chloride (SDBC), 4,4′‐[sulfonylbis(1,4‐phenylene)dioxy]dibenzoyl chloride (SODBC), 4,4′‐[sulfonylbis(2,6‐dimethyl‐1,4‐phenylene)dioxy]dibenzoyl chloride (4MeSODBC), or 4,4′‐(1,4‐phenylenedioxy)dibenzoyl chloride (ODBC) via a low‐temperature solution polycondensation reaction. A polyamide‐hydrazide without the flexibilizing linkages is also investigated for comparison. It was synthesized from 4A3HBH and terephthaloyl chloride (TCl) by the same synthetic route. The intrinsic viscosities of the polymer ranged from 2.85 to 4.83 dL g?1 in N,N‐dimethyl acetamide (DMAc) at 30°C and decreased with introducing the flexibilizing linkages into the polymer. All the polymers were soluble in DMAc, N,N‐dimethyl formamide (DMF), and N‐methyl‐2‐pyrrolidone (NMP), and their solutions could be cast into films with good mechanical strengths. Further, they exhibited a great affinity to water sorption. Their solubility and hydrophilicity increased remarkably by introducing the flexibilizing linkages. The polymers could be thermally cyclodehydrated into the corresponding poly(1,3,4‐oxadiazolyl‐benzoxazoles) approximately in the region of 295–470°C either in nitrogen or in air atmospheres. The flexibilizing linkages improve the solubility of the resulting poly(1,3,4‐oxadiazolyl‐benzoxazoles) when compared with poly(1,3,4‐oxadiazolyl‐benzoxazoles) free from these linkages. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
A series of free‐standing hybrid anion‐exchange membranes were prepared by blending brominated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (BPPO) with poly(vinylbenzyl chloride‐co‐γ‐methacryloxypropyl trimethoxy silane) (poly(VBC‐co‐γ‐MPS)). Apart from a good compatibility between organic and inorganic phases, the hybrid membranes had a water uptake of 32.4–51.8%, tensile strength around 30 MPa, and Td temperature at 5% weight loss around 243–261°C. As compared with the membrane prepared from poly (VBC‐co‐γ‐MPS), the hybrid membranes exhibited much better flexibility, and larger ion‐exchange capacity (2.19–2.27 mmol g?1) and hydroxyl (OH?) conductivity (0.0067–0.012 S cm?1). In particular, the hybrid membranes with 60–75 wt % BPPO had the optimum water uptake, miscibility between components, and OH? conductivity, and were promising for application in fuel cells. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
In order to determine the structure‐performance relationship of nonionic‐zwitterionic hybrid surfactants, N,N‐dimethyl‐N‐dodecyl polyoxyethylene (n) amine oxides (C12EOnAO) with different polyoxyethylene lengths (EOn, n = 1–4) were synthesized. For homologous C12EOnAO, it was observed that the critical micelle concentration (CMC), the maximum surface excess (Γm), CMC/C20, and the critical micelle aggregation number (Nm,c) decreased on going from 1 to 4 in EOn. However, there were concomitant increases in surface tension at the CMC (γCMC), minimum molecular cross‐sectional area (Amin), adsorption efficiency (pC20), and the polarity ([I1/I3]m) based on the locus of solubilization for pyrene. The values of log CMC and Nm,c decreased linearly with EOn lengthening from 1 to 4, although the impact of each EO unit on the CMC of C12EOnAO (n = 1–4) was much smaller than that typically seen for methylene units in the hydrophobic main chains of traditional surfactants. Compared to the structurally related conventional surfactant N,N‐dimethyl‐N‐dodecyl amine oxide (C12AO), C12EOnAO (n = 1–4) have smaller CMC, Amin, and CMC/C20, but larger pC20, Γm, and Nm,c with a higher [I1/I3]m. This may be attributed to the moderately amphiphilic EOn (n = 1–4) between the hydrophobic C12 tail and the hydrophilic AO head group.  相似文献   

12.
A new diimide–diacid chloride (3) containing a noncoplanar 2,2′‐dimethyl‐4,4′‐biphenylene unit was synthesized by treating 2,2′‐dimethyl‐4,4′‐diamino‐biphenylene with trimellitic anhydride followed by refluxing with thionyl chloride. Various new poly(ester‐imide)s were prepared from 3 with different bisphenols by solution polycondensation in nitrobenzene using pyridine as hydrogen chloride quencher at 170°C. Inherent viscosities of the poly(ester‐imide)s were found to range between 0.31 and 0.35 dL g?1. All of the poly(ester‐imide)s, except the one containing pendent adamantyl group 5e, exhibited excellent solubility in the following solvents: N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, o‐chlorophenol, and chloroform. The polymers showed glass‐transition temperatures between 166 and 226°C. The 10% weight loss temperatures of the poly(ester‐imide)s, measured by TGA, were found to be in the range between 415 and 456°C in nitrogen. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2486–2493, 2004  相似文献   

13.
Oil from the marine copepod, Calanus finmarchicus, which contains >86 % of fatty acids present as wax esters, is a novel source of n‐3 fatty acids for human consumption. In a randomized, two‐period crossover study, 18 healthy adults consumed 8 capsules providing 4 g of Calanus® Oil supplying a total of 260 mg EPA and 156 mg DHA primarily as wax esters, or 1 capsule of Lovaza® providing 465 mg EPA and 375 mg DHA as ethyl esters, each with an EPA‐ and DHA‐free breakfast. Plasma EPA and DHA were measured over a 72 h period (t = 1, 2, 4, 6, 8, 10, 12, 24, 48, and 72 h). The positive incremental area under the curve over the 72 h test period (iAUC0‐72 h) for both EPA and DHA was significantly different from zero (p < 0.0001) in both test conditions, with similar findings for the iAUC0–24 h and iAUC0–48 h, indicating the fatty acids were absorbed. There was no difference in the plasma iAUC0–72 h for EPA + DHA, or DHA individually, in response to Calanus Oil vs the ethyl ester condition; however, the iAUC0–48 h and iAUC0–72 h for plasma EPA in response to Calanus Oil were both significantly increased relative to the ethyl ester condition (iAUC0–48 h: 381 ± 31 vs 259 ± 39 μg*h/mL, p = 0.026; iAUC0‐72 h: 514 ± 47 vs 313 ± 49 μg*h/mL, p = 0.009). These data demonstrate a novel wax ester rich marine oil is a suitable alternative source of EPA and DHA for human consumption.  相似文献   

14.
A novel polymer bearing coumarin pendants of 4‐allyloxy‐2H‐chromen‐2‐one (ACO) was synthesized by atom transfer radical polymerization (ATRP) in toluene at 110°C using 2‐Bromoisobutyryl bromide (BIBB), Cu (I) Br, and 2,2′‐bipyridyl (bpy) as initiator, catalyst, and ligand, respectively. The most appropriate molar concentration ratio of [ACO] : [BIBB] : [Cu (I) Br] : [bpy] was found to be 40 : 1 : 1 : 2 for controlled polymerization. Successful chain extension polymerization of poly (4‐allyloxy‐2H‐chromen‐2‐one) (PACO) confirms the livingness of the process. The activation energy (Ea) (76.26 kJ mol?1) and enthalpy of activation (ΔH?) (73.07 kJ mol?1) were in good agreement to each other proving the feasibility of the reaction and negative value of entropy of activation (ΔS?) (?320 J mol?1 K?1) supported the highly restricted movement of reacting species in transition state during polymerization. Initial polymer decomposition temperature of PACO was found to be 130°C. SEM analysis revealed that polymer surface is not smooth with pointed rod like shapes. The polymer/Ag nanocomposite was synthesized and examined in view of antibacterial effect against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Proteus mirabilis, and Klebsiella pneumonae. PACO and its Ag nanocomposite (PACON) have been found to be active selectively against bacterial pathogen E. fecalis with minimum inhibitory concentration of 50 and 32 μg mL?1, respectively. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Anionic ring‐opening polymerization (AROP) was employed for the controlled synthesis of linear model block copolymers of 1,3,5,7‐tetrametil‐1,3,5,7‐tetravinyl(cyclotetrasiloxane) (V4) and 1,3,5‐dimethyl(cyclotrisiloxane) (D3) monomers by using sec‐butyl lithium (sec‐Bu?Li+) as initiator, and high‐vacuum anionic polymerization techniques. V4 copolymerization was promoted by employing D3 and sec‐Bu?Li+ producing living silanolates that open the stable V4 ring. For this purpose, two strategies were applied: (a) sequential addition of monomers, and (b) one‐step copolymerization at different reaction temperatures. According to the experimental results, higher levels of V4 incorporation (~ 18.14 mol %) were obtained by mixing both co‐monomers and performing the reaction at high temperature (80°C). This strategy allowed the control of the V4 incorporation into the copolymer structure, giving the opportunity of synthesizing model vinyl‐siloxane polymers. The gamma radiation of these materials showed that lower doses are needed to achieve the same gel content as in a model poly(dimethylsiloxane) (PDMS). In such a sense, these results constitute one of the first reports regarding the effect of gamma radiation on vinyl‐containing silicon polymers, and may be of fundamental importance if a biomedical cross‐linked rubber‐type PDMS is needed at earlier doses of sterilization. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
A type of switchable tertiary amine Gemini surfactant, N,N′‐di(N,N‐dimethyl propylamine)‐N,N′‐didodecyl ethylenediamine, was synthesized by two substitution reactions with 3‐chloro‐1‐(N,N‐dimethyl) propylamine, bromododecane and ethylene diamine as main raw materials. The structure of the product was characterized by FTIR and 1H‐NMR. We also investigated the surface tension when CO2 was bubbled in different concentrations of surfactant solution and the influence of different CO2 volumes on surface tension under a constant surfactant concentration. Finally the surface tension curve and the related parameters were acquired by surface tension measurements. The experimental results showed that the structure of the synthesized compounds were in conformity with the expected structure of the surfactant, and displayed a better surface activity after bubbling CO2. The critical micelle concentration (CMC) surface tension at CMC (γcmc) pC20 (negative logarithm of the surfactant's molar concentration C20, required to reduce the surface tension by 20 mN/m) surface excess (Γmax) at air/solution interface and the minimum area per surfactant molecule at the air/solution interface (Amin) were determined. Results indicate that the target product had good surface activity after bubbling CO2.  相似文献   

17.
A series of alkyl sulphobetaine Gemini surfactants Cn‐GSBS (n = 8, 10, 12, 14, 16) was synthesized, using aliphatic amine, cyanuric chloride, ethylenediamine, N,N′‐dimethyl‐1,3‐propyldiamine and sodium 2‐chloroethane sulfonate as main raw materials. The chemical structures were confirmed by FT‐IR, 1H NMR and elemental analysis. The Krafft points differ markedly with different carbon chain length, for C8‐GSBS, C10‐GSBS and C12‐GSBS are considered to be below 0 °C and C14‐GSBS, C16‐GSBS are higher than 0 °C but lower than room temperature. Surface‐active properties were studied by surface tension and electrical conductivity. Critical micelle concentrations were much lower than dodecyl sulphobetaine (BS‐12) and decreased with increasing length of the carbon chain from 8 to 16, and can reach a minimum as low as 5 × 10?5 mol L?1 for C16‐GSBS. Effects of carbon chain length and concentration of Cn‐GSBS on crude oil emulsion stability were also investigated and discussed.  相似文献   

18.
The aggregation behavior of a di‐ and tri‐block copolymers of type PEO‐PBO, PEO‐PBO‐PEO, surface‐active ionic liquid (SAIL) of type 4‐dodecyl‐4‐methylmorpholinium chloride [C12mmor][Cl], and 1‐dodecyl‐1‐methylpyrrolidinium chloride [C12mpyrr][Cl]) in water as well as in 10 mM of a poorly water soluble dexamethasone (dex) aqueous solution was studied by determining the critical micelle concentrations using drug solubilization, surface tension, and isothermal titration calorimetry (ITC) methods. ITC measurements were also made on solutions prepared by mixing the micellar aqueous solutions of copolymers and simple aqueous solutions of SAIL across the mole fractions at three different temperatures (298.15, 308.15, and 318.15 K). The thermodynamic parameters, namely Gibbs free energy (ΔGm), enthalpy (ΔHm), and entropy (ΔSm), of micellization were calculated, and it was observed that the negative ΔGm and positive ΔSm for the mixture solutions increase with the increase in mole fraction of SAIL. Otherwise, the micellization is reported to be a spontaneous and highly entropy‐driven process. The dex‐solubilized micellar solutions were mixed with agar to obtain standing gels. The gel samples were dry‐cast into thin films, and the release of dex from films by simple dilution was monitored by UV measurements. The drug release data was fitted to several mechanistic models, and it was inferred that the release mechanism for dex from thin films is non‐Fickian for mixtures and Fickian in copolymer or SAIL micellar aqueous solutions. The transport of dex is diffusion‐controlled with diffusivities of 5.8–12 × 10?11 m2 s?1 for copolymer micelles, 5–11 × 10?11 m2 s?1 for micelles of SAIL, and 3–14 × 10?11 m2 s?1 for the mixed micelles of copolymer and SAIL in aqueous media.  相似文献   

19.
A comb‐like polyether, poly(3‐2‐[2‐(2‐methoxyethoxy)ethoxy]ethoxymethyl‐3′‐methyloxetane) (PMEOX), was reacted with hexamethylene diisocyanate and extended with butanediol in a one‐pot procedure to give novel thermoplastic elastomeric poly(ether urethane)s (TPEUs). The corresponding hybrid solid polymer electrolytes were fabricated through doping a mixture of TPEU and poly(vinylidene fluoride) with three kinds of lithium salts, LiClO4, LiBF4 and lithium trifluoromethanesulfonimide (LiTFSI), and were characterized using differential scanning calorimetry, thermogravimetric analysis and Fourier transform infrared spectroscopy. The ionic conductivity of the resulting polymer electrolytes was then assessed by means of AC impedance measurements, which reached 2.1 × 10?4 S cm?1 at 30 °C and 1.7 × 10?3 S cm?1 at 80 °C when LiTFSI was added at a ratio of O:Li = 20. These values can be further increased to 3.5 × 10?4 S cm?1 at 30 °C and 2.2 × 10?3 S cm?1 at 80 °C by introducing nanosized SiO2 particles into the polymer electrolytes. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
Several biosurfactant‐producing bacterial strains were isolated from petroleum‐contaminated soil. The isolate ADMT1, identified as a new strain of Pseudomonas aeruginosa, was selected for further studies on the basis of oil displacement test and emulsification index (E24). The optimal parameters for production, determined by employing Box–Behnken design, were temperature 36.5 °C and pH 7. The environmental isolate ADMT1 produced significant amount of biosurfactant (1.7 g L?1 in 72 h) in minimal salt medium (MSM) using dextrose as the sole carbon source. The E24 value and critical micelle concentration (CMC) of the biosurfactant was 100% and 150 mg L?1, respectively. At CMC, the surface tension of water was reduced to 28.4 mN m?1. The biosurfactant exhibited hemolytic activity and antibacterial activity against 8 reference strains of pathogenic bacteria, including 2 methicillin‐resistant Staphylococcus aureus strains (MRSA ATCC 562 and MRSA ATCC 43300), with minimum inhibitory concentration (MIC) of 0.4 and 0.2 mg mL?1, respectively. The structure of biosurfactant was characterized by FTIR, 1H, and 13C NMR spectroscopy. 7 di‐rhamnolipid (RL) congeners were identified in the biosurfactant by ultraperformance liquid chromatography–mass spectrometry analysis. The major congeners, which constituted 67% of the RL mixture, included Rha‐Rha‐C10‐C10, Rha‐Rha‐C12‐C10, and Rha‐Rha‐C12:1‐C10. The minor congeners were Rha‐Rha‐C10‐C8, Rha‐Rha‐C10:1‐C10, Rha‐Rha‐C10‐C14:1, and Rha‐Rha‐C10‐C14. The congener Rha‐Rha‐C10‐C14 is being reported for the first time from any species of Pseudomonas. The high surface activity and E24 value make the ADMT1‐RL a potential candidate for its use in detergents, environmental bioremediation, and as an emulsifier in the food industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号