首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
炭黑表面接枝改性研究进展   总被引:3,自引:0,他引:3  
本文介绍了近年来炭黑表面接枝聚合研究的进展情况,主要讨论了自由基接枝、阴离子接枝和阳离子接枝聚合新方法炭黑与聚合物的偶联反应接枝。  相似文献   

2.
采用聚合物接枝的方法在碳纤维表面化学接枝聚合聚丙烯酰胺-丙烯酸乙酯共聚物.探究了反应温度对接枝样品形貌以及界面改性效果的影响.试验表明:当接枝温度为45℃时,碳纤维表面生成了一层表面粗糙、覆盖均匀的聚合物层,纤维各项性能最佳;纤维的表面能大幅度提升,由37.45 m/Nm增加到110.16 m/Nm,提高幅度为194....  相似文献   

3.
表面科学是一门重要的边缘科学,纤维的表面改性研究对于纤维的高附加值利用和改善其表面性能具有重要的意义。本文主要从化学改性和酶处理改性的角度介绍了纤维的表面改性研究进展,分析了化学改性和酶处理改性的优点和缺点,最后对纤维素纤维的表面改性研究进行了展望。  相似文献   

4.
低温等离子体技术及其对纤维表面改性的研究进展   总被引:3,自引:0,他引:3  
低温等离子体技术是一种快速、简便、无污染的处理工艺,正被广泛应用于纤维表面改性.简要介绍了等离子体的组成和分类,重点阐述了低温等离子体表面改性的控制条件、对纤维表面改性方法和原理以及等离子体在纺织印染中的应用进展.  相似文献   

5.
紫外光接枝用于高分子材料表面改性   总被引:1,自引:0,他引:1  
叙述了高分子材料紫外光辐照接枝改性的方法及其应用,并对其发展作出了展望。  相似文献   

6.
涤纶表面亲水改性研究进展及其发展方向   总被引:1,自引:0,他引:1       下载免费PDF全文
基于涤纶亲水改性的原理和存在问题,结合目前常用的亲水改性方法,介绍了用于涤纶表面亲水改性的几个方面:主要包括表面形态结构改性、表面接枝改性和亲水整理剂的涂覆整理。着重介绍了表面接枝改性方法,尤其是辐射接枝改性,分析了辐照诱导接枝的机理和改善涤纶辐射接枝率的措施。基于对这些改性方法优缺点的分析,指出了目前涤纶表面亲水改性存在的问题和将来的发展方向,认为理想的涤纶亲水改性方法应该具有不损害其原有的优良性能、耐久性好、经济效益高和环境友好等特点。  相似文献   

7.
等离子体技术表面改性高分子材料的研究进展   总被引:3,自引:0,他引:3  
阐述了等离子体表面改性技术的作用原理,总结论述了等离子体对高聚物表面作用的几种理论,综述了近年来等离子体技术表面改性高分子材料的最新进展。运用等离子体技术改变高分子材料的表面性质的方法主要有三类:等离子体处理、等离子体聚合和等离子体接枝。重点介绍了等离子体引发接枝聚合改性的研究进展。  相似文献   

8.
纤维素纤维表面接枝改性的化学机理   总被引:9,自引:0,他引:9  
郭雅琳  赵玉萍  林福海 《印染》2000,26(7):46-48
表面接枝是纤维素纤维改性的有效方法之一。文章介绍了几中纤维素纤维表面接枝改性方法的化学机理、影响因素、最佳工艺件及有待解决的问题。  相似文献   

9.
碳纤维表面改性处理及其基本性能表征   总被引:1,自引:0,他引:1  
为改善碳纤维与树脂基体之间的界面性能,提高碳纤维的摩擦性和表面浸润性,以T300碳纤维为原料,在空气条件下采用低温等离子体技术对碳纤维表面进行改性处理。通过正交试验分析法,得到等离子体处理的最佳方案;通过场发射扫描电镜观察得出,经过改性处理后的碳纤维表面变得凹凸不平且具有明显的剥离现象,表面粗糙度增加;通过傅里叶红外光谱测试分析得出,等离子体处理后碳纤维表面引进了-CH2-0H和-COH等新的官能团。等离子体处理使得碳纤维断裂强力减小,摩擦性能提高,表面浸润性提高。在制备碳纤维复合材料时有利于纤维与树脂的结合,利于碳纤维复合材料的制备。  相似文献   

10.
为全面了解适合芳纶纤维化学镀银的表面改性方法,综述芳纶纤维表面改性常用的物理方法(包括冷等离子体改性、超声改性、γ-射线改性和超临界流体技术)和化学方法(包括表面刻蚀、表面接枝和氟气改性)。发现各改性方法都有优缺点,都很难在保证芳纶纤维力学性能的前提下兼顾表面形貌、润湿性和极性基团的引入,因此建议将多种改性方法结合使用或使用改性剂对芳纶纤维进行二次功能化处理,使芳纶纤维化学镀银达到良好的效果。  相似文献   

11.
纤维素纤维功能化改性预处理技术研究进展   总被引:1,自引:0,他引:1  
预处理在纤维素的衍生物反应和功能转化中起着非常重要的作用。本文综述了提高纤维素可及度和反应性能的各种预处理技术及其发展;重点介绍了化学预处理技术及几种新兴的物理预处理技术;以纤维素纤维功能化制备吸水性材料为例,说明了纤维素纤维功能化改性及预处理技术的优势与广阔前景。  相似文献   

12.
造纸过程中,阳离子聚合物的使用在改善浆料滤水与留着性能、提高纸张强度性质、改善造纸系统可运行性和清洁度等方面发挥重要作用。然而目前工厂使用的阳离子聚电解质具有生物降解性差和环境危害性大等特性。探寻替代阳离子聚电解质的纸浆纤维阳离子化改性工艺技术,对促进制浆造纸的清洁生产具有重要的研究价值和应用前景。本文针对纸浆纤维材料组织结构紧密、可功能化的化学基团可及度低、纤维改性难度大的问题,简要综述了纸浆纤维预处理方法和阳离子化改性工艺研究进展,阐述了不同预处理方法对提高纸浆纤维可及性和羟基反应活性的作用机理和优缺点,并对纸浆纤维阳离子化改性方法和反应机理以及阳离子纸浆纤维在造纸方面的应用进行了介绍。  相似文献   

13.
宋俊  肖长发 《纺织导报》2006,(12):46-48
文章论述了UHMWPE(超高相对分子质量聚乙烯)纤维表面改性的几种方法:化学试剂处理法、等离子体处理法、电晕放电处理、辐射引发表面接枝处理等;分析了这些方法的改性原理及取得的效果和工业化进展,提出了UHMWPE纤维表面改性的可能发展方向。  相似文献   

14.
本研究通过对石英纤维进行酸/碱溶液和表面活性剂结合的预处理方式,改善其在水中的分散性,重点研究了酸溶液、碱溶液、表面活性剂的种类及浓度对石英纤维分散特性的影响。结果表明,预处理后的石英纤维具有良好的分散特性,其湿法成形的纸张(石英纸)表面平整、无明显纤维絮聚成团。通过H2SO4和聚氧化乙烯(PEO)2种预处理方式的结合,石英纤维在水中的分散性较佳。当H2SO4的pH值为3、PEO的质量浓度为0.1 g/L时,预处理后的石英纤维在水中的分散性最佳,石英纸的匀度指数可达89.1,较未处理原纤维抄造的石英纸匀度指数(222.6)降低了60%。  相似文献   

15.
碳纤维纸基复合材料是使用短切碳纤维与植物纤维或含有羟基等功能基团的纤维,通过湿法造纸工艺制备的具有特殊性能的功能复合材料,在导电、电磁屏蔽,导热,摩擦及电极等领域均已得到应用。随着应用推广的不断深入,引入碳纳米管/石墨烯的碳纤维纸基复合材料的研究和开发也逐渐成为研究热点。本文对近年国内外碳纤维纸基复合材料的研究进展进行了归纳总结,以期为碳纤维纸基复合材料的研究开发提供参考。  相似文献   

16.
聚丙烯腈基碳纤维研究进展   总被引:4,自引:0,他引:4  
聚丙烯腈基碳纤维由于其特殊的优良性能,在航空、航天、建筑、体育、汽车、医疗等领域得到广泛的应用。文章根据国内外相关资料对聚丙烯腈基碳纤维的发展现状进行了总结,指出了国内碳纤维存在的问题,并对其发展前景进行了探索。  相似文献   

17.
简述了质子交换膜燃料电池(PEMFC)的工作原理、PEMFC用碳纤维纸的制备工艺流程及该碳纤维纸的性能指标,重点介绍了碳纤维在抄纸过程中的分散性能、结合性能及国内外PEMFC用碳纤维纸的最新研究进展.  相似文献   

18.
膳食纤维具有调节胃肠道和预防慢性疾病等重要的生理功能,被誉为第七大营养素,但不同膳食纤维功能特性不同,因此,高活性膳食纤维的研发以及应用于食品加工和作为保健(功能)食品成为目前食品行业关注的热点。豆渣是大豆加工副产品,富含膳食纤维,但主要是不溶性膳食纤维(IDF),可溶性膳食纤维(SDF)含量极低,导致豆渣口感较差,在食品加工中的应用受限。本文综述了不同膳食纤维功能特性及比较了不同改性方法的工作原理和对豆渣膳食纤维中SDF的影响,为不同来源IDF的改性及豆渣膳食纤维的加工利用提供支持。  相似文献   

19.
合理摄入膳食纤维对机体健康至关重要。为了开发兼顾营养、感官与健康的膳食纤维强化食品,不溶性膳食纤维的分离提取与改性研究广受关注。大量研究运用物理作用力、化学反应或酶解等手段,对样品组成、结构以及性质进行改造,以强化其在食品加工与营养健康方面功能特性。改性产物作为添加成分对于食品的加工过程、产品品质及健康功效方面具有积极影响,有利于各类膳食纤维强化产品的开发。本文对近年来国内外文献报道的不溶性膳食纤维的提取、改性及应用相关研究成果进行梳理总结,以期为调控膳食纤维功能特性、开发高品质健康功能食品提供参考。  相似文献   

20.
在碳纤维生产过程中,上浆是一道重要的工序,上浆剂在碳纤维的性能方面扮演着重要的角色。首先介绍了碳纤维上浆剂的类型、合成方法及上浆工艺,然后重点阐述了上浆剂对碳纤维表面及复合材料的影响。已有研究结果表明:上浆后碳纤维表面形成一层光滑、连续、平整的薄膜,使其耐磨性、毛丝量都有所改善;上浆碳纤维与基体树脂不易剥离,增强了碳纤维层间剪切的强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号