首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
本文探讨了Si及α-Al2O3超细粉对Al2O3-ZrO2-C系材料显微结构的影响.认为在Al2O3-ZrO2-C系材料中同时加入Si和α-Al2O3超细粉,Si粉除了与C生成了SiC纤维外,其反应产物SiO2还与α-Al2O3超细粉及ZrO2生成了莫来石(A3S2)和Al2O3-ZrO2-SiO2(AZS)固溶体,这些新生成的矿物相对试样的显微结构产生重要的作用.  相似文献   

2.
采用三点弯曲及扫描电镜等方法研究了SiCw/Al2O3,SiCw/ZrO2)及SiCw/Al2O3+ZrO2(Y2O3)陶瓷复合材料的抗热震性。结果表明SiCw的加入使Al2O3,ZrO2(Y2O3)以及Al2O3+ZrO2(Y2O3)基体的抗热震性显著提高,Al2O3陶瓷基复合材料的抗热震性明显优于ZrO2(Y2O3)陶瓷基复合材料。同时发现在Al2O3+SiCw材料基础上再加入少量ZrO292  相似文献   

3.
本文对Al2O3基陶瓷复合材料Al2O3-ZrO2-SiCw进行了干摩擦磨损试验,并运用了SEM,TEM和XRD等手段对其显微结构、力学性能及它们与GCr15钢对摩时的摩擦磨损行为进行了系统分析,在此基础上深入探讨了SiC面增韧补强作用对复俣材料的摩擦磨损性能的影响。  相似文献   

4.
ZrO2—Al2O3—SiC系复相陶瓷材料的冲蚀磨损   总被引:1,自引:0,他引:1  
本文对ZrO2增韧10%SiC/Al2O3基复合材料和SiC颗粒弥散强化5%Al2O3/ZrO2基复合材料的冲蚀磨损的研究,实验表明:相变增韧有助于断裂韧性的改善,从而缓和了材料的高角冲蚀率;高弹模量的SiC二相粒子引入后基体材料的硬度增加,提高了材料的抗低角磨损能力。显微结构(SEM)分析表明,不同的冲蚀角度条件下材料表面的损伤行为和磨损微观机制也不相同,通过PUD计算,定量表征材料的抗切向磨损  相似文献   

5.
本以SiC板粒、ZrOCl2·8H2O、AlCl3和Y(MO)3为原料,利用共沉淀和热压烧结工艺,制备SiC板粒/Y-TZP和(含Al2O3)SiC板粒/Y-TZP复合材料。测试了材料的室温和高温力学性能。研究了添加Al2O3对SiC板粒/Y-TZO复合材料的影响。结果表明,SiC板粒/Y-TZP复合材料与Y-TZP复合材料与Y-TZP陶瓷相比,其室温强度和韧性出现明显下降,高温强度也没有改善;  相似文献   

6.
利用EPMA和XRD的分析方法,研究了Si_3N_4-Al_2O_3-ZrO_2系陶瓷材料表面氧化层组成。结果表明,Si_3N_4-Al_2O_3-ZrO_2系陶瓷材料表面氧化层是由方石英相、ZrSiO_4相和含有Al_2O_3、CaO等的SiO_2玻璃相所组成,其中SiO_2玻璃相中Al_2O_3、CaO等的含量,随着氧化时间的增加而逐渐增加。  相似文献   

7.
采用三点弯曲及扫描电镜等方法研究了SiCw/Al2O3、SiCw/ZrO3(Y2O3)及SiCw/Al2O3+ZrO2(Y2O3)陶瓷复合材料的抗热震性.结果表现SiCw的加入使Al2O3、ZrO2(Y2O3)以及Al2O3+ZrO2(Y2O3)基体的抗热震性显著提高,Al2O3陶瓷基复合材料的抗热震性明显优于ZrO2(Y2O3)陶瓷基复复合材料.同时发现在Al2O3十SiCw材料基础上再加入少量ZrO2(2Y)颗粒(10Vo1%),也可进一步提高Al2O3+SiCw材料的抗热震性.  相似文献   

8.
CaO—MgO—Fe2O3—Al2O3—SiO2渣系玻璃晶化动力学   总被引:4,自引:0,他引:4  
根据玻璃形成动力学理论,计算了CaO-MgO-Fe2O3-Al2O3-SiO2渣系中成核速率(I)和晶体长大速度(U),获得晶体形成的最佳温度,研究了热处理温度对CaO-MgO-Fe2O3-Al2O3-SiO2渣系晶体的影响,计算的晶体形成的最佳温度结果表明与该体系的最佳热处理温度一致。  相似文献   

9.
MgO—B2O3—SiO2—Al2O3—CaO中含硼组分析晶动力学   总被引:2,自引:0,他引:2  
根据玻璃形成动力学理论,计算了MgO-B2O3-SiO2-Al2O3-CaO渣系中含硼组分2MgO·B2O3的成核速度(I)和晶体长大速度(U),获得了2MgO·B2O3晶体形成的最佳温度.采用化学分析、X射线衍射分析(XRD)和差热分析(DTA)等方法研究了热处理温度对MgO—B2O3—SiO2—Al2O3—CaO渣系硼提取率的影响.结果表明:硼渣最佳热处理温度与2MgO·B2O3晶体形成最佳温度一致。  相似文献   

10.
本文以SiC板粒、ZrOCl2-8H2O、AlCl3和Y(MO)3为原料,利用共沉淀和热压烧结工艺,制备SiC板粒/Y-TZP和(含Al2O3)SiC板粒/Y-TZP复合材料.测试了材料的室温和高温力学性能.研究了添加Al2O3对SiC板粒/Y-TZO复合材料的影响.结果表明,SiC板粒/Y-TZP复合材料与Y-TZP陶瓷相比,其室温强度和韧性出现明显下降,高温强度也没有改善;而在SiC板粒与Y-TZP复合的基础上,添加Al2O3可明显提高材料的强度和断裂韧性,同时,材料的高温强度也获得显著改善.  相似文献   

11.
本文对Al2O3基陶瓷复合材料Al2O3-ZrO2-SiCw进行了干摩擦磨损试验,并运用了SEM,TEM和XRD等手段对其显微结构、力学性能及它们与GCr15钢对摩时的摩擦磨损行为进行了系统分析,在此基础上深入探讨了SiC晶须(SiCw)增韧补强作用对复合材料的摩擦磨损性能的影响。  相似文献   

12.
用DTA,XRD及压汞方法了研究了α-Al2O3与CaO-Al2O3-SiO2-B2O3系玻璃复合材料的等速升温烧结与相组成,实验表明;在700-900℃后由于闭气孔大量生成使致密化速度减慢,钙长石是由玻璃析晶及α-Al2O3与玻璃在>700℃反应生成。  相似文献   

13.
运用XRD,SEM,DTA和化学分析等手段研究了不同冷却速度及添加剂对SiO2-Al2O3-CaO(MgO-Fe2O3-Na2O)系玻璃分相及性能的影响,结果发现不同冷却速度处理对玻璃的分相有明显影响,使玻璃呈不同颜色其中冷却速度为15℃=min处理得到玻璃其抗折强度高于600℃退火玻璃。  相似文献   

14.
梁勇  韩亚苓 《材料导报》2000,(Z10):331-333
本文将Al2O3/SiC纳米复合陶瓷分别与Cr25Ni5合金,Co-Cr-W合金及烧结W环三种配制材料在465℃的熔融锌液中进行环-块腐蚀磨损实验。结果表明耐锌腐蚀是各种材料耐磨的前提。W(环)与Al2O3/SiC纳米复合陶瓷(块)是最佳的摩擦副。  相似文献   

15.
用DTA、XRD及压汞方法研究了α-Al2O3与CaO-Al2O3-SiO2-B2O3系玻璃复合材料的等速升温烧结与相组成.实验表明:在70-900℃时烧结快速进行.900℃后由于闭气孔大量生成使致密化速度减慢.钙长石是由玻璃析晶及α-Al2O3与玻璃在>700℃反应生成.  相似文献   

16.
用理学X射线衍射仪、TG-DTA、IR-440 红外光谱研究了Al2O3-Na2 O-CaO-SrO系统富Al2O3 区域固态反应。实验结果表明,煅烧过程固态反应的最终物相组成为Na2O·11Al2O3,CaO·6Al2O3 ,SrO·6Al2O3 与α-Al2O3 共存  相似文献   

17.
本文对ZrO2增韧10%SiC/Al2O3基复合材料和SiC颗粒弥散强化5%Al2O3/ZrO2基复合材料的冲蚀磨损的研究,实验表明:相交增初有助于断裂韧性的改善,从而缓和了材料的高角冲蚀率;高弹模量的SiC二相粒子引入后基体材料的硬度增加,提高了材料的抗低角磨损能力.显微结构(SEM)分析表明,不同的冲蚀角度条件下材料表面的损伤行为和磨损微观机制也不相同,通过PUD计算,定量表征材料的抗切向磨损能力.  相似文献   

18.
采用SHS/PHIP工艺制备了致密的TiC-Al2O3-Fe系金属陶瓷,研究了延迟时间,高压特续时间,压力及Fe含量对合成TiC-Al2O3-Fe金属陶瓷实度的影响,结果表明,采用SHS/PHIP技术制备了TiC-Al2O3-Fe系金属陶瓷时,合成产物中气体的排放,液相的存在及组成相之间的润湿性是制备密实材料的关键。  相似文献   

19.
Al2O3—SiO2—TiO2复合陶瓷薄膜的制备与结构   总被引:1,自引:0,他引:1  
曾智强  萧小月 《功能材料》1997,28(6):599-603
本文利用Sol-Gel法制备了Al2O-SiO2-TiO2复合陶瓷薄膜,讨论了主要内容是体系成分(Al:Si:Ti摩尔比)对落膜制备过程及结构的影响。通过分步水解法可以得到稳定的Al2O3-SiO2-TiO2复合溶胶,进而制备复合陶瓷薄膜。组分间的静电作用是溶胶凝结的原因。三组分中,Si/Ti摩尔比是决定溶胶稳定性的主要因素。通过XRD对薄膜的相组成进行了分析,表明复合薄膜由Al4Ti2SiO12  相似文献   

20.
氧化钇含量对Al2O3/Y—TZP复相陶瓷的影响   总被引:6,自引:0,他引:6  
本文以ZrOCl2.8H2O、Al2O3及Y(NO3)3为原料,用共沉淀法合成Y2O3含量不同的ZrO2-Al2O3复合粉体,并采用热压工艺制备复相陶瓷。研究了氧化钇含量对复相陶瓷力学性能及应力诱导下氧化锆相变能力的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号