首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The aims of the present study were to estimate the fraction of renal brush border membrane Na+-H+ exchange activity mediated by the isoform NHE3 and to evaluate whether the increased brush border Na+-H+ exchange observed in metabolic acidosis is due to increased expression of NHE3 protein. Compared with other isoforms, NHE3 is known to have a unique profile of sensitivity to pharmacologic inhibitors, including relative resistance to amiloride analogs and HOE694. We therefore assessed the inhibitor sensitivity of pH gradient-stimulated 22Na uptake in renal brush border vesicles isolated from normal rats. The I50 values for amiloride (30 microM), dimethylamiloride (10 microM), ethylisopropylamiloride (6 microM), and HOE694 (>100 microM) were markedly dissimilar from those reported for NHE1 and NHE2 but were nearly identical to reported values for NHE3. Na+-H+ exchange activity in renal brush border vesicles isolated from rats with 5 days of NH4Cl-induced metabolic acidosis was increased 1.5-fold compared with control rats, with no change in inhibitor sensitivity. Western blot analysis indicated that NHE3 protein expression was greater in brush border membranes from acidotic compared with control rats. We conclude that virtually all measured Na+-H+ exchange activity in brush border membranes from control and acidotic rats is mediated by NHE3 and that metabolic acidosis causes increased expression of renal brush border NHE3 protein.  相似文献   

2.
We previously characterized a Na+/H+ exchange activity in rat pancreatic zymogen granules [Anderie, I., and Thévenod, F. (1996) J. Membrane Biol, 152, 195-205]. Here we have identified the Na+/H+ exchanger (NHE) isoforms present in zymogen granules by functional studies with NHE inhibitors. The NHE1 specific blocker HOE 694 [3-(methylsulfonyl-4-piperidino-benzoyl)-guanidine methanesulfonate] inhibited zymogen granule Na+/H+ exchange in a concentration dependent manner, maximally to 53 +/- 5% of controls at 100nM. The remaining Na+/H+ exchange activity was inhibitable by EIPA [5-(N-ethyl-N-isopropyl)amiloride] (EC50 approximately 25 microM) or benzamil (EC50 approximately 100 microM). Amiloride inhibited weakly suggesting that "amiloride-resistant" and "amiloride-sensitive" NHE are expressed in zymogen granules. cDNA sequences encoding NHE1- and NHE4-specific transmembrane domains were detected by RT-PCR in rat pancreatic tissue and in the rat pancreatic acinar cell line AR4-2J. The presence of NHE1 and NHE4 in zymogen granule membranes was confirmed by immunoblots of zymogen granule membranes and by pre-embedding immunogold labeling of purified rat pancreatic zymogen granules with polyclonal NHE1 and NHE4 antibodies. Therefore, we propose that NHE1 and NHE4 are expressed in zymogen granule membranes of rat exocrine pancreas.  相似文献   

3.
4.
This report presents a study of the effects of the membrane fluidizer, benzyl alcohol, on NHE isoforms 1 and 3. Using transfectants of an NHE-deficient fibroblast, we analyzed each isoform separately. An increase in membrane fluidity resulted in a decrease of approximately 50% in the specific activities of both NHE1 and NHE3. Only Vmax was affected; KNa was unchanged. This effect was specific, as Na+, K+, ATPase activity was slightly stimulated. Inhibition of NHE1 and NHE3 was reversible and de novo protein synthesis was not required to restore NHE activity after washout of fluidizer. Inhibition kinetics of NHE1 by amiloride, 5-(N,N-dimethyl)amiloride (DMA), 5-(N-hexamethyl)amiloride (HMA) and 5-(N-ethyl-N-isopropyl)amiloride (EIPA) were largely unchanged. Half-maximal inhibition of NHE3 was also reached at approximately the same concentrations of amiloride and analogues in control and benzyl alcohol treated, suggesting that the amiloride binding site was unaffected. Inhibition of vesicular transport by incubation at 4 degrees C augmented the benzyl alcohol inhibition of NHE activity, suggesting that the fluidizer effect does not solely involve vesicle trafficking. In summary, our data demonstrate that the physical state of membrane lipids (fluidity) influences Na+/H+ exchange and may represent a physiological regulatory mechanism of NHE1 and NHE3 activity.  相似文献   

5.
Epithelial cell volume increases that occur because of the uptake of Na+-cotransported solutes or hypotonic dilution are followed by a regulatory volume decrease (RVD) due to the activation of K+ and Cl- channels. We studied the relationship of Na+/H+ exchange (NHE) to this RVD in suspended guinea pig jejunal villus cells, using electronic sizing to measure cell volume changes and fluorescent spectroscopy of cells loaded with 2', 7'-bis(carboxyethyl)-5()-carboxyfluorescein to monitor intracellular pH (pHi). When the volume increase achieved by these cells during Na+ solute absorption was duplicated by a modest 5-7% hypotonic dilution, their pHi first acidified and then alkalinized. This alkalinization was blocked by 5-(N-methyl-N-isobutyl) amiloride (MIA; 1 microM), an inhibitor of NHE. The RVD subsequent to 5-7% hypotonic dilution was prevented by Na+-free medium and by amiloride and non-amiloride derivatives. The order of potency of these inhibitors was as follows: MIA > 5-(N,N-dimethyl) amiloride > cimetidine > clonidine, in keeping with the pattern attributable to NHE-1 as the isoform of NHE responsible for increase in pHi after modest volume increases. A substantial 30% hypotonic dilution caused acidification, and RVD following this larger volume increase was not affected by MIA. To assess the effect of hypotonicity on the activity of NHE, we measured the rate of MIA-sensitive pHi recovery from an acid load (dpHi/dt) in 5 and 30% hypotonic media. pHi recovery was faster in 5% hypotonic medium compared with isotonic medium and slowest in 30% hypotonic medium, which suggested that the activity of NHE was stimulated in the slightly hypotonic medium, but inhibited in the 30% hypotonic medium. To determine the role of activated NHE in RVD after a modest volume increase, cells were hypotonically diluted 7% in MIA to prevent RVD and then alkalinized by NH4Cl or acidified by propionic acid addition. Only after alkalinization was there complete volume regulation. We conclude that in Na+-absorbing enterocytes, the NHE-1 isoform of Na+/H+ exchange is stimulated by volume increases that duplicate the "physiological" volume increase occurring when these cells absorb Na+-cotransported solutes. The subsequent alkalinization of pHi is a required determinant of the osmolyte loss that underlies this distinct volume regulatory mechanism.  相似文献   

6.
Inhibition of Na+/H+ exchange (NHE) subtypes has been investigated in a study of the mouse fibroblast L cell line (LAP1) transfected with human (h) NHE1, rabbit (rb) NHE2, rat (rt) or human (h) NHE3 as well as an opossum kidney cell line (OK) and porcine renal brush-border membrane vesicles (BBMV). S3226 ?3-[2-(3-guanidino-2-methyl-3-oxo-propenyl)-5-methyl-phenyl]-N-isopro pylidene-2-methyl-acrylamide dihydro-chloride? was the most potent and specific NHE3 inhibitor with an IC50 value of 0.02 micromol/l for the human isoform, whereas its IC50 value for hNHE1 and rbNHE2 was 3.6 and approximately = 80 micromol/l, respectively. In contrast, amiloride is a weak NHE3 inhibitor (IC50>100 micromol/l) with a higher affinity to hNHE1 and rbNHE2. Cariporide (4-isopropyl-3-methylsulphonyl-benzoyl-guanidine methane-sulphonate), which has an IC50 for NHE3 of approximately 1 mmol/l, is a highly selective NHE1 inhibitor (0.08 micromol/l). Therefore, S3226 is a novel tool with which to investigate the physiological and pathophysiological roles of NHE3 in animal models.  相似文献   

7.
This study investigated the effect of chronic hypertonicity on the OKP cell Na/H antiporter, encoded by Na/H exchanger 3 (NHE3). Chronic (48 h) increases in extracellular glucose, mannitol, or raffinose concentration caused a significant increase in Na/H antiporter activity, while increases in urea concentration were without effect. This effect was seen with changes in osmolality of only 20 mOsm/liter, a magnitude that is observed clinically in poorly controlled diabetes mellitus. Increases in mannitol concentration acutely inhibited and chronically stimulated Na/H antiporter activity. The increase in Na/H antiporter activity induced by hypertonic incubation was resistant to 10(-7) and 5 x 10(-6) M but inhibited by 10(-4) M ethylisopropyl amiloride, consistent with regulation of NHE3. In addition, hypertonicity increased total cellular and plasma membrane NHE3 protein abundance twofold, with only a small increase in NHE3 mRNA abundance. We conclude that chronic pathophysiologically relevant increases in tonicity lead to increases in NHE3 protein abundance and activity. This may be responsible for increased proximal tubule apical membrane Na/H antiporter activity in poorly controlled diabetes mellitus, which could then contribute to hypertension, glomerular hyperfiltration and diabetic nephropathy.  相似文献   

8.
The activity of the NhaA Na+/H+ antiporter of Vibrio parahaemolyticus is inhibited by amiloride. We found an amino acid sequence in the NhaA that was identical to a putative amiloride binding domain of the Na+/H+ exchanger in mammalian cells. We constructed mutant NhaAs that had amino acid substitutions in the putative amiloride binding domain by site-directed mutagenesis. These include V62L (Val62 replaced by Leu), F63Y, F64Y, and L65F. Most mutant NhaAs showed decreased sensitivity for amiloride. Among these, the F64Y mutant NhaA showed the least amiloride sensitivity, with a Ki value 7 to 10 times greater than that in the wild type. Thus, the sequence between residues V62 and L65 in NhaA, especially F64, is very important for the inhibitory effect of amiloride on the antiporter.  相似文献   

9.
The uptake of choline by the tegument of Hymenolepis diminuta was investigated. The Q10 at pH 7.0 was 1.7, with an Ea of 90 kJ.mol-1. Choline transport was pH sensitive: At pH 5.0, a Na(+)-independent mechanism predominated, which was inhibited by 100 nM benzamil, 130 mM Na+, and 300 microM verapamil. At pH 7.0, the Na(+)-independent mechanism was inhibited by 130 mM Na+, amiloride, and EIPA with IC50's of 130 microM and 30 microM, respectively, and by benzamil with IC50's of 100 pM (high-potency Benzamil Sensitive Component; HBSC) and 70 microM (low-potency Benzamil Sensitive Component; LBSC). Calcium-free saline enhanced choline uptake non-specifically. Lanthanum3+, Gd3+, gramicidin, nigericin, and high-K+ did not affect choline uptake at pH 5.0 or pH 7.0, and 10 microM verapamil was without effect at pH 5.0, suggesting no significant role for the electrical potential difference across the brush-border membrane, a Na+/H+ antiporter, a Na+/Ca2+ antiporter, or Ca2+ channels in choline uptake. Under physiological conditions, the HBSC accounts for approximately 25% of the total choline taken up at pH 5.0, while the LBSC accounts for approximately 55% of the choline taken up at pH 7.0. The data suggest novel choline transporting mechanisms; an HBSC which displays properties in common with apical Na+ channels, and a unique LBSC of choline transport.  相似文献   

10.
We previously demonstrated that the progesterone-(P) initiated human sperm acrosome reaction (AR) was dependent on the presence of extracellular Na+ (Na(-)0). Moreover, Na(-)0 depletion resulted in a decreased cytosolic pH (pHi), suggesting involvement of a Na(+)-dependent pHi regulatory mechanism during the P-initiated AR. We now report that the decreased pHi resulting from Na(+)0 depletion is reversible and mediated by a Na+/H+ exchange (NHE) mechanism. To determine the role of an NHE in the regulation of pHi, capacitated spermatozoa were incubated in Na(+)-deficient, bicarbonate/CO2-buffered (ONaB) medium for 15-30 min, which resulted in an intracellular acidification as previously reported. These spermatozoa were then transferred to Na(+)-containing, bicarbonate/CO2-buffered (NaB) medium; Na(+)-containing, Hepes-buffered (NaH) medium; or maintained in the ONaB medium. Included in the NaH medium was the NHE inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA). The steady-state pHi was then determined by spectrofluorometric measurement of bis(carboxyethyl)5(6)-carboxyfluoroscein (BCECF) fluorescence. EIPA (0.1 microM) significantly (P < 0.05) inhibited the pHi recovery produced by NaH medium. Moreover, the pHi in NaH medium was not significantly (P < 0.05) different than NaB medium. These results indicate that a Na(+)-dependent, bicarbonate-independent pHi regulatory mechanism, with a pharmacological characteristic consistent with an NHE, is present in capacitated spermatozoa. In support of the involvement of a sperm NHE, we also demonstrated specific immunoreactivity for a 100 kDa porcine sperm protein using an NHE-1 specific monoclonal antibody. Interestingly, no significant (P = 0.79) effect was seen on the P-initiated AR when EIPA was included in either the NaH or NaB medium. While these findings suggest that inhibition of NHE-dependent pHi regulation in capacitated spermatozoa is not sufficient to block initiation of the AR by P, they do not preclude the possibility that an NHE mediates the regulation of capacitation or sperm motility.  相似文献   

11.
12.
In a series of experiments aimed to understand the signaling pathways that regulate intracellular pH (pHi) in rat mast cells, the effect of different intracellular mechanisms on the activity of the Na+/H+ exchanger was studied. After promoting an artificial acidification with sodium propionate we determined the variations on pHi rate recovery. pHi was measured with the dye 2, 7-bis(carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester. We studied the effect that the inhibition of some cellular exchangers with different drugs induced on pHi. When the Na+/H+ exchanger was inhibited in the presence of amiloride, the recovery rate constant was twofold smaller than the control value. After the recovery, the final pH was lower than the initial value when the cells were treated either with amiloride or with 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid (an anionic antiport inhibitor). No effect was observed when the Na+/K+-ATPase or the Na+/Ca2+ exchanger were inhibited. The suppression of intracellular and extracellular calcium did not induced any change in pHi. The addition of thapsigargin, an activator of capacitative calcium influx, or the phorbol esther 12-O-tetradecanoylphorbol-13-acetate (PMA), a protein kinase C (PKC) activator, increased the activity of the antiporter. Both effects were abrogated by inhibition of the Na+/K+-ATPase with ouabain. The increase in cAMP levels did not affect the effect of PMA on pHi recovery, but it blocked the effect of thapsigargin. Our results indicate that rat mast cells regulate pHi by the combination of some anionic exchanger and the Na+/H+ antiporter. And also that the modulation of this exchanger is the consequence of the connection between different intracellular mechanisms, Na+/K+-ATPase-PKC-calcium, among which cAMP seems not to have a direct role.  相似文献   

13.
The effect of Ca2+ channel-acting drugs on bovine adrenal mitochondria Ca2+ movements was investigated. Mitochondrial Ca2+ uptake is performed by an energy-driven Ca2+ uniporter with a Km of 20.9 +/- 3.2 microM and Vmax of 148.1 +/- 7.2 nmol 45Ca2+ min-1 mg-1. Ca2+ release is performed through an Na+/Ca2+ antiporter with a Km for Na+ of 4.2 +/- 0.5 mM, a Vmax of 7.5 +/- 0.4 nmol 45Ca2+ min-1 mg-1, and a Hill coefficient of 1.4 +/- 0.2 Ca2+ efflux through the mitochondrial Na+/Ca2+ exchanger was inhibited by several dihydropyridines (nitrendipine, felodipine, nimodipine, (+)isradipine) and by the benzothiazepine diltiazem with similar potencies. In contrast, neither CGP 28392, Bay-K-8644, amlodipine, nor verapamil had any effect on Ca2+ efflux. Nitrendipine at 20 microM modified neither the Km nor the Hill coefficient for Na+, whereas the Vmax was reduced to 2.9 nmol 45Ca2+ min-1 mg-1, thus demonstrating noncompetitive modulation of the Na+/Ca2+ exchanger. None of the Ca2+ channel-acting drugs assayed at 100 microM affected Ca2+ influx through the uniporter. Ca2+ channel blockers inhibited the Na+/Ca2+ antiporter and displaced the specific binding of [3H]nitrendipine to intact mitochondria with Ki values similar to the IC50s obtained for the inhibition of the Ca2+ efflux. Ca2+ channel-acting drugs that did not inhibit the Na+/Ca2+ exchanger (amlodipine, CGP 28392, Bay-K-9644, and verapamil, at concentrations of 100 microM or higher) had no effect on [3H]nitrendipine binding. These results suggest that the adrenomedullary mitochondrial dihydropyridine receptor is associated with the Na+/Ca2+ exchanger.  相似文献   

14.
Epidermal growth factor (EGF) triggers rapid and delayed effects on gluconeogenesis, cytosolic (lactate/pyruvate ratio) and mitochondrial (3-hydroxybutyrate/acetoacetate ratio) redox states (Soler, C. and Soley, M., Biochem. J., 294 (1993) 865-872). This study attempts to determine whether the mechanism by which EGF modulates any of these parameters is dependent on the regulation of Na+/H+ exchange and/or Na+/K(+)-ATPase activities. The Na+/H+ exchange was inhibited by either amiloride or the analogue 5-(N,N-hexamethylene)amiloride (HMA), and the Na+/K(+)-ATPase activity was inhibited by ouabain. The delayed EGF inhibition of gluconeogenesis, increase of the lactate/pyruvate ratio and decrease in the 3-hydroxybutyrate/acetoacetate ratio were unaltered in the presence of amiloride, HMA or ouabain. The rapid EGF stimulation of gluconeogenesis was also observed in the presence of HMA or ouabain. Although Na+/H+ exchange and/or Na+/K(+)-ATPase are regulated by EGF, our results indicate that these activities are not required for the effects of EGF on gluconeogenesis and/or cytosolic and mitochondrial redox state.  相似文献   

15.
The extracellular pH (pHe) in solid tumours is frequently lower than the pHe in normal tissues. Cells within an acidic environment depend on mechanisms which regulate intracellular pH (pHi) for their survival, including the Na+/H+ antiport which exports protons in exchange for Na+ ions. Amiloride and its analogues DMA (5-(N,N-dimethyl)amiloride), MIBA (5-(N-methyl-N-isobutyl)amiloride) and EIPA (5-(N-ethyl-N-isopropyl)amiloride) are known to inhibit the Na+/H+ antiport and therefore decrease the cells ability to regulate pHi. All three analogues were found to be potent inhibitors of the antiport in human MGH-U1 and murine EMT-6 cells, with DMA being approximately 20, MIBA 100 and EIPA 200-fold as potent as amiloride; EIPA also gave more complete suppression of the Na+/H+ antiport. These agents were not toxic to cells when used alone; however, in combination with nigericin, an agent which acidifies cells, all three analogues were toxic to cells at pHe < 7.0, and markedly enhanced the toxicity of nigericin alone. Cell killing was greatest for nigericin used with EIPA or MIBA. None of the agents were toxic to cells at pHe 7.0 or above. When used against variant cells lacking the Na+/H+ antiport (PS-120 cells) EIPA did not enhance the cytotoxicity of nigericin alone, suggesting that the observed effect was due to inhibition of Na+/H+ exchange, rather than due to non-specific effects. The combination of EIPA and nigericin gave similar cell killing in previously dissociated and intact MGH-U1 spheroids, suggesting that the agents have good penetration of solid tissue. Preliminary experiments using EMT-6 tumours in mice suggested that EIPA and nigericin were able to enhance the toxicity of radiation in vivo, presumably through selective effects against the hypoxic (and probably acidic) subpopulation of cells that is resistant to radiation.  相似文献   

16.
Both Na+/Li+ countertransport and electrochemical proton gradient (delta mu(H+))-induced Na+ and H+ fluxes are increased in erythrocytes from patients with essential hypertension. It was assumed that these abnormalities are related to ubiquitous (housekeeping) forms of the Na+/H+ exchanger (NHE-1). To examine this hypothesis, we compared kinetic and regulatory properties of erythrocyte Na+/Li+ countertransport and delta mu(H+)-induced Na+ and H+ fluxes with data obtained for cloned isoforms of the Na+/H+ exchanger. In human erythrocytes, Na+/Li+ countertransport exhibited a hyperbolic dependence on [Na+]0 with a K0.5 of approximately 30 to 40 mmol/L. The activity of this carrier was increased by two-fold in the fraction of erythrocytes enriched with the old cells, was inhibited by 0.1 mmol/L phloretin, and was insensitive to both 1 mmol/L amiloride and ATP depletion. In contrast, delta mu(H+)-induced 22Na influx was exponentially increased at [Na+]0 > 60 mmol/L, was insensitive to phloretin, was partly decreased by both 1 mmol/L amiloride and ATP depletion, and was the same in total erythrocytes and in the old cells. The values of Na+/Li+ countertransport and delta mu(H+)-induced Na+ influx in erythrocytes from different species were not correlating and their ratio in human, rat, and rabbit erythrocytes was 10:1:170 and 1:5:1 for Na+/ Li+ countertransport and delta mu(H+)-induced Na+ influx, respectively. In contrast to the majority of nonepithelial cells and cells transfected with an ubiquitous isoform of Na+/H+ exchanger, both delta mu(H+)-induced Na+ influx and Na+/Li+ countertransport in human erythrocytes were completely insensitive to ethylisopropyl amiloride (20 micromol/L) and cell shrinkage. Thus, our data strongly suggest that human erythrocyte Na+/Li+ countertransport and delta mu(H+)-induced Na+/H+ exchange are mediated by the distinct transporters. Moreover, because the properties of these erythrocyte transporters and NHE-1 are different, it complicates the use of erythrocytes for the identification of the mechanism for activating the ubiquitous form of Na+/H+ exchanger in primary hypertension.  相似文献   

17.
1. The benzoylguanidine derivative Hoe 694 ((3-methylsulphonyl-4- piperidino-benzoyl) guanidine methanesulphonate) was characterized as an inhibitor of Na+/H+ exchange in rabbit erythrocytes, rat platelets and bovine endothelial cells. The potency of the compound was slightly lower or comparable to ethylisopropyl amiloride (EIPA). 2. To investigate a possible cardioprotective role of the Na+/H+ exchange inhibitor Hoe 694, rat isolated working hearts were subjected to ischaemia and reperfusion. In these experiments all untreated hearts suffered ventricular fibrillation on reperfusion. Addition of 10(-7) M Hoe 694 to the perfusate almost abolished reperfusion arrhythmias in the rat isolated working hearts. 3. Hoe 694 reduced the release of lactate dehydrogenase (LDH) and creatine kinase (CK), which are indicators of cellular damage during ischaemia, into the venous effluent of the hearts by 60% and 54%, respectively. 4. The tissue content of glycogen at the end of the experiments was increased by 60% and the high energy phosphates ATP and creatine phosphate were increased by 240% and 270% respectively in the treated hearts as compared to control hearts. 5. Antiischaemic effects of the Na+/H+ exchange inhibitor, Hoe 694, were investigated in a second experiment in anaesthetized rats undergoing coronary artery ligation. In these animals, pretreatment with Hoe 694 caused a dose-dependent reduction of ventricular premature beats and ventricular tachycardia as well as a complete suppression of ventricular fibrillation down to doses of 0.1 mg kg-1, i.v. Blood pressure and heart rate remained unchanged. 6. We conclude that the new Na+/H+ exchange inhibitor, Hoe 694, shows cardioprotective and antiarrhythmic effects in ischaemia and reperfusion in rat isolated hearts and in anaesthetized rats. In view of the role which Na+/H+ exchange seems to play in the pathophysiology of cardiac ischaemia these effects could probably be attributed to Na+/H+ exchange inhibition.  相似文献   

18.
19.
The ubiquitous plasma membrane Na+/H+ exchanger (NHE1) is rapidly activated in response to various extracellular signals. To understand how the intracellular Ca2+ is involved in this activation process, we investigated the effect of Ca2+ ionophore ionomycin on activity of the wild-type or mutant NHE1 expressed in the exchanger-deficient fibroblasts (PS120). In wild-type transfectants, a short (up to 1 min) incubation with ionomycin induced a significant alkaline shift (approximately 0.2 pH unit) in the intracellular pH (pHi) dependence of the rate of 5-(N-ethyl-N-isopropyl) amiloride-sensitive 22Na+ uptake, without changes in the cell volume and phosphorylation state of NHE1. Mutations that prevented calmodulin (CaM) binding to a high affinity binding region (region A, amino acids 636-656) rendered NHE1 constitutively active by inducing a similar alkaline shift in pHi dependence of Na+/H+ exchange. These same mutations abolished the ionomycin-induced NHE1 activation. These data suggest that CaM-binding region A functions as an "autoinhibitory domain" and that Ca2+/CaM activates NHE1 by binding to region A and thus abolishing its inhibitory effect. Furthermore, we found that a short stimulation with thrombin and ionomycin had apparently no additive effects on the alkaline shift in the pHi dependence of Na+/H+ exchange and that deletion of region A also abolished such an alkaline shift induced by a short thrombin stimulation. The results strongly suggest that the early thrombin response and the ionomycin response share the same activation mechanism. Based on these data and the results shown in the accompanying paper (Bertrand, B., Wakabayashi, S., Ikeda, T., Pouysségur, J., and Shigekawa, M. (1994) J. Biol. Chem. 269, 13703-13709), we propose that CaM is one of the major "signal transducers" that mediate distinct extracellular signals to the "pHi sensor" of NHE1.  相似文献   

20.
The effect of endothelins (ET-1 and ET-3) on 86Rb+ uptake as a measure of K+ uptake was investigated in cultured rat brain capillary endothelium. ET-1 or ET-3 dose-dependently enhanced K+ uptake (EC50 = 0.60 +/- 0.15 and 21.5 +/- 4.1 nM, respectively), which was inhibited by the selective ETA receptor antagonist BQ 123 (cyclo-D-Trp-D-Asp-Pro-D-Val-Leu). Neither the selective ETB agonists IRL 1620 [N-succinyl-(Glu9,-Ala11,15)-ET-1] and sarafotoxin S6c, nor the ETB receptor antagonist IRL 1038 [(Cys11,Cys15)-ET-1] had any effect on K+ uptake. Ouabain (inhibitor of Na+,K(+)-ATPase) and bumetanide (inhibitor of Na(+)-K(+)-Cl- cotransport) reduced (up to 40% and up to 70%, respectively) the ET-1-stimulated K+ uptake. Complete inhibition was seen with both agents. Phorbol 12-myristate 13-acetate (PMA), activator of protein kinase C (PKC), stimulated Na+,K(+)-ATPase and Na(+)-K(+)-Cl- cotransport. ET-1- but not PMA-stimulated K+ uptake was inhibited by 5-(N-ethyl-N-isopropyl)amiloride (inhibitor of Na+/H+ exchange system), suggesting a linkage of Na+/H+ exchange with ET-1-stimulated Na+,K(+)-ATPase and Na(+)-K(+)-Cl- cotransport activity that is not mediated by PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号