首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a comparison of dry etching of polymethyl methacrylate (PMMA) and polycarbonate (PC) in O2 capacitively coupled plasma (CCP) and inductively coupled plasma (ICP). A diffusion pump was used as high vacuum pump in both cases. Experimental variables were process pressure (30-180 mTorr), CCP power (25-150 W) and ICP power (0-350 W). Gas flow rate was fixed at 5 sccm. An optimized process pressure range of 40-60 mTorr was found for the maximum etch rate of PMMA and PC in both CCP and ICP etch modes. ICP etching produced the highest etch rate of 0.9 μm/min for PMMA at 40 mTorr, 100 W CCP and 300 W ICP power, while 100 W CCP only plasma produced 0.46 μm/min for PMMA at the same condition. For polycarbonate, the highest etch rates were 0.45 and 0.27 μm/min, respectively. RMS surface roughnesses of PMMA and PC were about 2-3 nm after etching. Etch selectivity of PMMA over photoresist was 1-2 and that of PC was less than 1. When ICP power increased from 0 to 350 W, etch rates of PMMA and PC increased linearly from 0.47 to 1.18 μm/min and from 0.18 to 0.6 μm/min, while the negative self bias slightly reduced from 364 to 352 V. Increase of CCP power raised both self bias and PMMA etch rate. PMMA etch rates were about 3 times higher than those of PC at the same CCP conditions. SEM data showed that there was some undercutting of PMMA and PC after etching at 300 W ICP, 100 W CCP and 40 mTorr. The results also showed that the etched surface of PMMA was rough and that of PC was relatively smooth.  相似文献   

2.
Shen L  Chen Z  Li Y  He S  Xie S  Xu X  Liang Z  Meng X  Li Q  Zhu Z  Li M  Le XC  Shao Y 《Analytical chemistry》2008,80(16):6323-6328
An electrochemical DNAzyme sensor for sensitive and selective detection of lead ion (Pb(2+)) has been developed, taking advantage of catalytic reactions of a DNAzyme upon its binding to Pb(2+) and the use of DNA-Au bio-bar codes to achieve signal enhancement. A specific DNAzyme for Pb(2+) is immobilized onto an Au electrode surface via a thiol-Au interaction. The DNAzyme hybridizes to a specially designed complementary substrate strand that has an overhang, which in turn hybridizes to the DNA-Au bio-bar code (short oligonucleotides attached to 13 nm gold nanoparticles). A redox mediator, Ru(NH3)6(3+), which can bind to the anionic phosphate of DNA through electrostatic interactions, serves as the electrochemical signal transducer. Upon binding of Pb(2+) to the DNAzyme, the DNAzyme catalyzes the hydrolytic cleavage of the substrate, resulting in the removal of the substrate strand along with the DNA bio-bar code and the bound Ru(NH3)6(3+) from the Au electrode surface. The release of Ru(NH3)6(3+) results in lower electrochemical signal of Ru(NH3)6(3+) confined on the electrode surface. Differential pulse voltammetry (DPV) signals of Ru(NH3)6(3+) provides quantitative measures of the concentrations of Pb(2+), with a linear calibration ranging from 5 nM to 0.1 microM. Because each nanoparticle carries a large number of DNA strands that bind to the signal transducer molecule Ru(NH3)6(3+), the use of DNA-Au bio-bar codes enhances the detection sensitivity by five times, enabling the detection of Pb(2+) at a very low level (1 nM). The DPV signal response of the DNAzyme sensor is negligible for other divalent metal ions, indicating that the sensor is highly selective for Pb(2+). Although this DNAzyme sensor is demonstrated for the detection of Pb(2+), it has the potential to serve as a general platform for design sensors for other small molecules and heavy metal ions.  相似文献   

3.
The effects of tetrafluoromethane (CF4) plasma on the surface morphology, chemical compositions, and electrical property of tungsten oxide (W18O49) nanowires are investigated. The nanostructured tungsten oxide nanowires with average length of 250-350 nm were self-catalytically grown on Si substrate. By post-treatment with CF4 plasma for 10 min, the W18O49 nanowires on the substrate showed the highest current response. Longer CF4 plasma post-treatment time demonstrated higher etching effect which demolished the nanowires and resulted in lower conductivity of the samples. The disintegration of the W18O49 nanowires layer after CF4 plasma treatment, revealed physically by the decrease of the average thickness and chemically by the decrease of XRD peak ratio (I 23.0/I 26.0), was closely related to the overall electrical performance. The etching effect was further reveled by Raman spectra showing the evolution of O-W-O and W=O characteristics with the increased post-treatment time. Moreover, the improvement of the electrical property of W18O49 nanowires was elucidated by the exposure rate to explain the mechanism of plasma post treatment in three stages: passivation, degradation and ablation. The maximum exposure rate, corresponding to the maximum conductivity, was achieved by 10 min of CF4 plasma treatment. The time-differentiated exposure analyses confirmed the evolution of resistance of W18O49 nanowires on Si with different post-treatment time which supported the results of surface characterizations.  相似文献   

4.
Bishop JD  Klavins E 《Nano letters》2007,7(9):2574-2577
DNA nanomotors are synthetic biochemical devices whose motion can be controlled at the molecular scale. Some DNA devices require several exogenous additions of different types of fuel to operate, which limits their potential uses. However, several devices that operate autonomously have recently been described. One such DNA nanomotor, based on a 10-23 DNA enzyme (DNAzyme), was introduced by Chen, Wang, and Mao (Angew. Chem., Int. Ed. 2004, 43, 3554). Although this DNAzyme nanomotor operates autonomously, its performance degrades over time in experiments. In this paper, we describe a mathematical model that predicts this degradation by accounting for the gradual accumulation of waste in the system. We also introduce and experimentally demonstrate two improved versions of the DNAzyme nanomotor. In particular, the new nanomotor systems use the enzyme ribonuclease H to selectively digest waste, resulting in nanomotors whose performance does not degrade significantly over time.  相似文献   

5.
An enzyme-free amplified detection platform is described using the horseradish peroxidase (HRP)-mimicking DNAzyme as an amplifying label. Two hairpin structures that include three-fourths and one-fourth of the HRP-mimicking DNAzyme in caged, inactive configurations are used as functional elements for the amplified detection of the target DNA. In the presence of the analyte DNA, one of the hairpins is opened, and this triggers the autonomous cross-opening of the two hairpins using the strand displacement principle. This leads to the formation of nanowires consisting of the HRP-mimicking DNAzyme. The resulting DNA nanowires act as catalytic labels for the colorimetric or chemiluminescent readout of the sensing processes (the term "enzyme-free" refers to a protein-free catalyst). The analytical platform allows the sensing of the analyte DNA with a detection limit corresponding to 1 × 10(-13) M. The optimized system acts as a versatile sensing platform, and by coaddition of a "helper" hairpin structure any DNA sequence may be analyzed by the system. This is exemplified with the detection of the BRCA1 oncogene with a detection limit of 1 × 10(-13) M.  相似文献   

6.
A G-rich nucleic acid sequence binds hemin and yields a biocatalytic complex (DNAzyme) of peroxidase activity, namely, the biocatalyzed generation of chemiluminescence in the presence of H(2)O(2) and luminol. The DNAzyme is used as a label for the amplified detection of DNA, or for the analysis of telomerase activity in cancer cells, using chemiluminescence as an output signal. In one configuration, the analyzed DNA is hybridized with a primer nucleic acid that is associated with a Au surface, and the DNAzyme label is hybridized with the surface-confined analyte DNA. The DNA is analyzed with a detection limit of approximately 1 x 10(-)(9) M. In the second system, telomerase from HeLa cancer cells induces telomerization of a primer associated with a Au surface and the complementary DNAzyme units are hybridized with the telomere to yield the chemiluminescence. The detection limit of the system corresponds to 1000 HeLa cells in the analyzed sample.  相似文献   

7.
Nickel oxide thin films of various thicknesses were grown on glass substrates by dc reactive magnetron sputtering technique in a pure oxygen atmosphere with sputtering power of 150 W and substrate temperature of 523 K. Crystalline properties of NiO films as a function of film thickness were investigated using X-ray diffraction. XRD analysis revealed that (200) is the preferred orientation and the orientation of the films changed from (200) to (220) at film thickness of 350 nm. The maximum optical transmittance of 60% and band gap of 3.82 eV was observed at the film thickness of 350 nm. The lowest electrical resistivity of 5.1 Ω cm was observed at a film thickness of 350 nm, thereafter resistivity increases with film thickness.  相似文献   

8.
Optical properties of single-crystal sapphire fibers   总被引:4,自引:0,他引:4  
Single-crystal sapphire fibers have been grown with the laser-heated pedestal-growth method with losses as low as 0.3 dB /m at 2.94 ?m. With the incorporation of a computer-controlled feedback system, fibers have been grown with less than +/-0.5 % diameter variation, or +/-1.5 ?m for a 300- ?m fiber. The losses in these fibers have been reduced further through a postgrowth anneal at 1000 degrees C in air, from 5.4 to 1.5 dB /m at 543 nm and from 0.4 -0.3 dB /m at 2.94 ?m. These fibers delivered 4.7 W at 10 Hz of Er:YAG laser power.  相似文献   

9.
Photosensitive silicate glasses doped with silver, cerium, fluorine, and bromine were fabricated at the Center for Research and Education in Optics and Lasers. Bragg diffractive gratings were recorded in the volume of these glasses with a photothermorefractive process (exposure to UV radiation of a He-Cd laser at 325 nm is followed by thermal development at 520 degrees C). Absolute diffraction efficiency of as much as 93% was observed for 1-mm-thick gratings with spatial frequencies up to 2500 mm(-1). No decreasing of diffraction efficiency was detected at low spatial frequencies. Original glasses were transparent (absorption coefficient less than 1 cm(-1)) from 350 to 4100 nm. Induced losses in exposed and developed glass decreased from 0.3 to 0.03 cm(-1) between 400 and 700 nm, respectively, and did not exceed 0.01-0.02 cm(-1) in the IR region from 700 to 2500 nm. Additional losses caused by parasitic structures recorded in the photosensitive medium were studied.  相似文献   

10.
The behavior of oxide film on pure iron passivated in a borate buffer solution and subsequently radiated by infrared light (IR) was investigated in comparing to that by just IR annealing without passivation, and was evaluated by film structure, etc. The effect of thermal annealing over 250 degrees C was observed with gamma-Fe2O3 grain growth and sharp increase in surface roughness, film thickness and oxygen content. An ellipsometric parameter of tan psi was sensitively reflected by annealing effect, and tan psi curve had a shoulder at 150 degrees C for 5 min and a peak of tan psi was shifted from 350 nm to 450 nm in wavelength. This shift was also caused by the formation of gamma-Fe2O3, because the peak was also observed in tan psi of the bulk Fe2O3 family. Passivation effects at 800 mV prior to IR annealing on thickness and oxygen content changed at 150 degrees C, and decreased tan psi at 350 nm and excessive film growth over 250 degrees C, and increased oxygen content under 100 degrees C and surface roughness at 50-250 degrees C. The terrace width with atomic scale flatness was slightly increase by passivation prior to IR annealing at 50-250 degrees C, and the maximum terrace width reached larger than 10 nm by passivation and IR annealing at 100 degrees C for 30 min.  相似文献   

11.
Gold nanoparticles were synthesis by a two-phase method (water/toluene) and attached to a solid phase synthesis (SPS) resins. The average diameter of the nanoparticles determined by TEM image analysis was 3.9 ± 0.3 nm. The SPS resin used was an o-nitrobenzyl based photolabile system. This was first loaded with Fmoc-Cys(Trt)-OH following standard PyBOP protocols. UV-Vis spectroscopy was used to monitor the reaction of the nanoparticle solution with the SPS resin. The bound nanoparticles were released from the SPS resin by exposure to UV light, (λ = 350 nm, intensity = 10 000 μW cm− 2) and shown to reform a stable solution. The nanoparticles were further modified into clusters on the surface of the SPS resin by the addition of pentanedithiol or assembled into nanoparticle dimers by the addition of a 1,3-propanediamine post photolytic release.  相似文献   

12.
The hemin/G-quadruplex nanostructure and the Pb(2+)-dependent DNAzyme are implemented to develop sensitive surface plasmon resonance (SPR) and electrochemical sensing platforms for Pb(2+) ions. A complex consisting of the Pb(2+)-dependent DNAzyme sequence and a ribonuclease-containing nucleic acid sequence (corresponding to the substrate of the DNAzyme) linked to a G-rich domain, which is "caged" in the complex structure, is assembled on Au-coated glass surfaces or Au electrodes. In the presence of Pb(2+) ions, the Pb(2+)-dependent DNAzyme cleaves the substrate, leading to the separation of the complex and to the self-assembly of the hemin/G-quadruplex on the Au support. In one sensing platform, the Pb(2+) ions are analyzed by following the dielectric changes at the surface as a result of the formation of the hemin/G-quadruplex label using SPR. This sensing platform is further amplified by the immobilization of the sensing complex on Au NPs (13 nm) and using the electronic coupling between the NPs and the surface plasmon wave as an amplification mechanism. This method enables the sensing of Pb(2+) ions with a detection limit that corresponds to 5 fM. The second sensing platform implements the resulting hemin/G-quadruplex as an electrocatalytic label that catalyzes the electrochemical reduction of H(2)O(2). This method enables the detection of Pb(2+) with a detection limit of 1 pM. Both sensing platforms reveal selectivity toward the detection of Pb(2+) ions.  相似文献   

13.
We have found that the surface and bulk solution properties in a microfabricated device affect the degree and probability of electrostretching of DNA molecules. Using lambda phage DNA, we found that significantly hydrophilic surfaces between the electrodes decrease the efficiency of stretching. Surfaces treated with higher silane (trimethylchlorosilane) concentrations performed better presumably due to the decreased nonspecific adsorption of DNA on these surfaces compared to their more hydrophilic counterparts. The shape and dimensions of the electrodes also affected the efficiency of stretching. Both liftoff and metal etching methods produced electrodes with random microscopic peaks along the electrode's edge and were poorly suited for stretching. Annealing the electrodes (450 degrees C for 10 min) removed most of these peaks and allowed for more controlled stretching to be obtained. We also found that thin electrodes (65 nm) gave close to a 90% success rate of DNA stretching but stretching with thick electrodes (350 nm) produced only a 20% success rate.  相似文献   

14.
Zhang L  Zhu J  Li T  Wang E 《Analytical chemistry》2011,83(23):8871-8876
A label-free bifunctional colorimetric oligonucleotide probe for DNA and protein detection has been developed on the basis of a novel catalytic molecular beacon consisting of two hairpin structures and a split G-quadruplex DNAzyme in the middle. The two loops of this molecular beacon consist of thrombin aptamer sequence and the complementary sequence of target DNA, which are utilized to sense single-stranded DNA and thrombin. The G-quadruplex DNAzyme can effectively catalyze the H(2)O(2)-mediated oxidation of 3,3',5,5'-tetramethylbenzidine sulfate to generate colorimetric signal. Upon addition of the target, the DNA or protein combines with one loop of the hairpin structures, and meanwhile drives the middle G-quadruplex DNAzyme to dissociate. This results in a decrease of catalytic activity, enabling the separate analysis of DNA and thrombin.  相似文献   

15.
A Pb(II)-specific DNAzyme fluorescent sensor has been modified with a thiol moiety in order to immobilize it on a Au surface. Self-assembly of the DNAzyme is accomplished by first adsorbing the single-thiolated enzyme strand (HS-17E-Dy) followed by adsorption of mercaptohexanol, which serves to displace any Au-N interactions and ensure that DNA is bound only through the S-headgroup. The preformed self-assembled monolayer is then hybridized with the complementary fluorophore-containing substrate strand (17DS-Fl). Upon reaction with Pb(II), the substrate strand is cleaved, releasing a fluorescent fragment for detection. Fluorescence intensity may be correlated with original Pb(II) concentration, and a linear calibration was obtained over nearly four decades: 10 microM > or = [Pb(II)] > or = 1 nM. The immobilized DNAzyme is a robust system; it may be regenerated after cleavage, allowing multiple sensing cycles. In addition, drying of fully assembled DNAzyme before reaction with Pb(II) does not significantly affect analytical performance. These results demonstrate that, in comparison with solution-based schemes, immobilization of the DNAzyme sensor onto a Au surface lowers the detection limit (from 10 to 1 nM), maintains activity and specificity, and allows sensor regeneration and long-term storage. Realization of Pb(II) detection through an immobilized DNAzyme is the first important step toward creation of a stand-alone, portable Pb(II) detection device such as those immobilizing DNAzyme recognition motifs in the nanofluidic pores of a microfluidic-nanofluidic hybrid multilayer device.  相似文献   

16.
A novel AgBr/WO(3) composite photocatalyst was synthesized by loading AgBr on WO(3) substrate via deposition-precipitation method and characterized by XRD, SEM and DRS. The as-prepared AgBr/WO(3) was composed of monoclinic WO(3) substrate and face-centered cubic AgBr nanoparticles with crystalline sizes less than 56.8 nm. AgBr/WO(3) had absorption edge at about 470 nm in the visible light region. The optical AgBr content in AgBr/WO(3) was 0.30:1 (Ag/W) at the corresponding apparent rate, k(app), of 0.0160 min(-1) for MO degradation. The highest k(app) was 0.0216 min(-1) for 4 g/L catalyst. The OH acted as active species. Addition of H(2)O(2) within 0.020 mmol/L can efficiently trap electrons to generate more OH and further improved photocatalytic activity of AgBr/WO(3).  相似文献   

17.
Titanium oxide thin films have been prepared by reactive DC sputtering at room temperature on soda-lime glass (SLG) and flexible polyimide (Kapton) substrates. The sputtering conditions have been adjusted in order to achieve high deposition rates between 15 and 45 nm/min. Post-deposition heating of the samples has been performed at 350 °C in nitrogen during 30 min. The crystalline structure of these films and their optical, morphological, and electric characteristics have been studied before and after annealing by X-ray diffraction, spectrophotometric measurements, atomic force microscopy, and the four-point probe method. The optical data indicate that pure anatase phase, which crystallizes after the heating process, is obtained on both SLG and Kapton substrates at the lowest deposition rate (15 nm/min). In this case, the samples exhibit high electric resistivity above 300 Ωcm. Otherwise, for the highest deposition rate (45 nm/min), crystalline rutile is identified in the as-grown and heated films, with a lower optical gap energy than anatase and also a lower resistivity that reaches 0.3 Ωcm after heating. At intermediate deposition rates, anatase and rutile coexist in the samples as has been verified by X-ray diffraction, although the overall optical and electric characteristics are dominated by the rutile phase. Analogous titanium oxide layers have been obtained on SLG and Kapton, and this opens the possibility of substituting flexible plastics for conventional glass substrates.  相似文献   

18.
A study of the phosphorescence mechanisms in polycrystalline diamond films was carried out through their thermoluminescent (TL) vanishing glow response. The polycrystalline diamond films phosphoresced when kept at room or higher temperatures after being excited with a UV light source. The observed behaviour of shallow and deep traps during the phosphorescence process can be explained with a simple time-dependent model. The diamond film phosphorescence was induced by exciting with a UV light source of 4 W and 254 nm wavelength. The TL vanishing glow curves were integrated from room temperature to 350°C at a linear heating rate of 10°C s-1 in a N2 atmosphere. The optical response of the diamond films was studied by means of its luminescence spectra, showing a broad emission band centered around 500 nm.  相似文献   

19.
Wei H  Li B  Li J  Dong S  Wang E 《Nanotechnology》2008,19(9):095501
Novel functional oligonucleotides, especially DNAzymes with RNA-cleavage activity, have been intensively studied due to their potential applications in therapeutics and sensors. Taking advantage of the high specificity of 17E DNAzyme for Pb(2+), highly sensitive and selective fluorescent, electrochemical and colorimetric sensors have been developed for Pb(2+). In this work, we report a simple, sensitive and label-free 17E DNAzyme-based sensor for Pb(2+) detection using unmodified gold nanoparticles (GNPs) based on the fact that unfolded single-stranded DNA could be adsorbed on the citrate protected GNPs while double-stranded DNA could not. By our method the substrate cleavage by the 17E DNAzyme in the presence of Pb(2+) could be monitored by color change of GNPs, thereby Pb(2+) detection was realized. The detection of Pb(2+) could be realized within 20?min, with a detection limit of 500?nM. The selectivity of our sensor has been investigated by challenging the sensing system with other divalent metal ions. Since common steps such as modification and separation could be successfully avoided, the sensor developed here could provide a simple, cost-effective yet rapid and sensitive measurement tool for Pb(2+) detection and may prove useful in the development of sensors for clinical toxicology and environmental monitoring in the future.  相似文献   

20.
Fu R  Li T  Lee SS  Park HG 《Analytical chemistry》2011,83(2):494-500
A novel DNAzyme molecular beacon (DNAzymeMB) strategy was developed for target-induced signal-amplifying colorimetric detection of target nucleic acids. The DNAzymeMB, which exhibits peroxidase activity in its free hairpin structure, was engineered to form a catalytically inactive hybrid through hybridization with a blocker DNA. The presence of target DNA leads to dissociation of the DNAzymeMB from the inactive hybrid through hybridization with the blocker DNA. This process results in recovery of the catalytically active DNAzymeMB, which can catalyze a colorimetric reaction that signals the presence of the target DNA. In addition, a primer was rationally designed to anneal to the blocker DNA of the blocker/target DNA duplex and displace the bound target DNA during the extension reaction. The released target DNA triggers the next cycle involving hybridization with blocker DNA, DNAzymeMB dissociation, primer extension, and target displacement. This unique amplifying strategy leads to the generation of multiple numbers of active DNAzymeMB molecules from a single target molecule and gives a detection limit down to 1 pM, a value that is nearly 3 or 5 orders of magnitude lower than those of previously reported DNAzyme molecular beacon-based DNA detection methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号