首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficiency of protein chemical modification on tyrosine residues with N‐methylluminol derivatives was drastically improved by using horseradish peroxidase (HRP). In the previous method, based on the use of hemin and H2O2, oxidative side reactions such as cysteine oxidation were problematic for functionalization of proteins selectively on tyrosine residues. Oxidative activation of N‐methylluminol derivatives with a minimum amount of H2O2 prevented the occurrence of oxidative side reactions under HRP‐catalyzed conditions. As probes for HRP‐catalyzed protein modification, N‐methylluminol derivatives showed much higher efficiency than tyramide without inducing oligomerization of probe molecules. Tyrosine modification also proceeded in the presence of β‐nicotinamide adenine dinucleotide (NADH, H2O2‐free conditions).  相似文献   

2.
Oxidation of glyceraldehyde−3−phosphate dehydrogenase (GAPDH) by reactive oxygen species such as H2O2 activate pleiotropic signaling pathways is associated with pathophysiological cell fate decisions. Oxidized GAPDH binds chaperone proteins with translocation of the complex to the nucleus and mitochondria initiating autophagy and cellular apoptosis. In this study, we establish the mechanism by which H2O2−oxidized GAPDH subunits undergo a subunit conformational rearrangement. H2O2 oxidizes both the catalytic cysteine and a vicinal cysteine (four residues downstream) to their respective sulfenic acids. A ‘two−cysteine switch’ is activated, whereby the sulfenic acids irreversibly condense to an intrachain thiosulfinic ester resulting in a major metastable subunit conformational rearrangement. All four subunits of the homotetramer are uniformly and independently oxidized by H2O2, and the oxidized homotetramer is stabilized at low temperatures. Over time, subunits unfold forming disulfide−linked aggregates with the catalytic cysteine oxidized to a sulfinic acid, resulting from thiosulfinic ester hydrolysis via the highly reactive thiosulfonic ester intermediate. Molecular Dynamic Simulations provide additional mechanistic insights linking GAPDH subunit oxidation with generating a putative signaling conformer. The low−temperature stability of the H2O2−oxidized subunit conformer provides an operable framework to study mechanisms associated with gain−of−function activities of oxidized GAPDH to identify novel targets for the treatment of neurodegenerative diseases.  相似文献   

3.
The kinetics and products of the reaction of ozone with specific amino acids, peptides, and proteins are reviewed based on studies reported in the literature. Ozone reacts mainly with the unprotonated amino group of the acids and the second-order ozone rate constants for these reactions, except for cysteine, methionine, and tryptophan, vary by about two-orders from 2.6?×?104 to 4.4?×?106 M?1s?1. The site of attack on cysteine and methionine by O3 is at the sulfhydryl rather than the amino group to give sequential O-atom addition products. The order of reactivity for the oxidation of amino acids by O3 at pH 8 is cysteine > tryptophan ≈ methionine > phenylalanine ≈ histidine > others, with half-lives mostly in the range of milliseconds to tens of seconds (1 mg L-1 O3 dose). Reactions of O3 with aliphatic amino acids form nitrate, ammonia, and one or two carbon atom-containing carbonyl and carboxylic byproducts. In the ozonolysis of peptides and proteins, oxidation by O3 occurs at the tyrosine, tryptophan, histidine, cysteine, and methionine residues. Oxidation of proteins results in changes in their folding ability and tertiary structures.  相似文献   

4.
An iron‐catalyzed process for the oxidation of saturated hydrocarbons (cycloalkanes and alkylarenes) to alcohols and ketones with aqueous H2O2 in acetonitrile at room temperature is reported. Addition of a carboxylic acid increases the selectivity towards the ketone formation. Best results were obtained with ethylbenzene as substrate and acetic acid as additive, affording acetophenone as the main product.  相似文献   

5.
The Baeyer–Villiger oxidation of cyclic ketones to the corresponding lactones using aqueous hydrogen peroxide as an oxidant over transition metal oxides was investigated. MoO3 and WO3 were found to exhibit higher catalytic activity than TiO2, Fe2O3, Co3O4, ZnO and ZrO2. The high catalytic activity was attributed to the interaction of MoO3/H2O2 and WO3/H2O2. Additionally, the reaction mechanism on MoO3 and WO3 was proposed.  相似文献   

6.
The possibility of the integration of the processes of H2O2 production through isopropanol partial oxidation and the direct ammoximation of cyclohexanone with H2O2 and NH3 catalyzed by TS‐1 was investigated. The results of isopropanol partial oxidation showed that around 7.5 % yield of H2O2 was obtained at 110 °C, 10 atm, 2 h, and after fractionation, a H2O2 solution with the typical composition 25.2 wt.‐% H2O2, 10.3 wt.‐% isopropanol, 0.29 wt.‐% acetone, 0.45 wt.‐% phosphoric acid and 0.43 wt.‐% acetic acid was obtained. The presence of these impurities up to the above levels did not appreciably influence the ammoximation of cyclohexanone in terms of the conversion of cyclohexanone and the selectivity to cyclohexanone oxime. The results indicate that the processes of H2O2 production through isopropanol partial oxidation and the ammoximation of cyclohexanone can be integrated.  相似文献   

7.
The new application of acyltransferase, isolated from Mycobacterium smegmatis for the chemo-enzymatic Baeyer-Villiger oxidation of cyclic ketones to lactones was demonstrated. Acyltransferase exhibited high activity, and high stability under harsh reaction conditions, like oxidation with 60% aq. H2O2 at 45 °C. This paves the way to a novel robust chemo-enzymatic method for lactone synthesis with high yields.  相似文献   

8.
BACKGROUND: Anionic surfactant sodium bis (2‐ethylhexyl) sulfosuccinate (AOT) had an inhibiting effect on lignin peroxidase (LiP). To improve the catalytic activity of LiP in an AOT reversed micelle in isooctane, nonionic surfactant polyoxyethylene lauryl ether (Brij30) was incorporated into the interfacial membrane. H2O2 played dual roles in the LiP‐catalyzed oxidation of substrates. To obtain a sustainable high activity of LiP, a coupled enzymatic reaction, i.e. the glucose oxidase (GOD)‐catalyzed oxidation of glucose was used as an H2O2 source. RESULTS: Owing to modification of the charge density of the interfacial membrane, the activity of LiP in an optimized AOT/Brij30 reversed micellar medium (χB (the molar percentage of Brij30) = 0.53, ω0 ([H2O]/([AOT] + [Brij30]) = 23, pH = 4.8) was 40 times that in a single AOT reversed micelle. Due to the controlled release of H2O2, the concentration of H2O2 in the mixed reversed micellar medium was maintained at a moderately high level throughout, which made the LiP‐catalyzed oxidation of substrates proceed at a higher conversion rate than counterparts in which H2O2 was supplied externally in one batch at the beginning of the reaction. Decolourization of two waterless‐soluble aromatic dyes (pyrogallol red and bromopyrogallol red) using LiP coupled with GOD in the medium also demonstrated that a higher decolourization percentage was obtained if H2O2 was supplied enzymatically. CONCLUSION: The proposed measures (both physicochemical and biochemical) were very effective, giving significant improvement in the catalytic performance of LiP in a single AOT reversed micelle in isooctane, which helped to degrade or transform hydrophobic aromatic compounds with LiP in reversed micelles more efficiently. Copyright © 2007 Society of Chemical Industry  相似文献   

9.
In this study, a new synthesis method was developed for the production of modified sol‐gel alumina (SG‐M) for the selective oxidation of H2S to elemental sulphur. The catalytic activity of this modified alumina without any active metal incorporation was then compared with the activity of commercial alumina (alumina‐com) for H2S selective oxidation. The N2 adsorption‐desorption isotherm showed that the SG‐M alumina synthesized in this work has a mesoporous structure with well‐defined hysteresis loops. Both alumina materials showed a γ‐Al2O3 crystalline phase with an amorphous structure in their crystal structure. The surface acidity of the alumina materials was determined using pyridine‐adsorbed FTIR analyses, and both alumina showed Lewis acid sites on their surfaces. The catalytic activity tests were performed at 250°C using a feed ratio of O2/H2S:0.5. The complete conversion of H2S over SG‐M was achieved during 400 minutes of reaction time. However, the commercial alumina lost its activity at earlier reaction times. Lewis acid sites and surface hydroxyl groups caused the alumina to be active in H2S selective catalytic oxidation, and the formation of Al‐S bonds, observed when the H2S conversion fell, caused a decrease in the catalytic activity of the alumina materials. A high sulphur yield (≥95%) was obtained over SG‐M, even though there was no active metal incorporation and even in the presence of excess oxygen. Considering the catalytic activities, the new sol‐gel alumina synthesized in this work is superior to commercial alumina. It was concluded that, as a catalyst without any active metal, SG‐M is a promising catalyst in H2S selective oxidation to sulphur.  相似文献   

10.
Selective Oxidations on Recoverable Catalysts Assembled in Emulsions   总被引:1,自引:0,他引:1  
Catalysts assembled in emulsions are found to be potentially recoverable and efficient for a number of catalytic reactions. The catalysts composed of polyoxometalate anions and quaternary ammonium cations have been designed and synthesized according to the catalytic reactions and by optimizing the structures of cations and anions. The catalysts act essentially as surfactants, which are uniformly distributed in the interface of the emulsion droplets, and accordingly behave like homogeneous catalysts. The catalysts show remarkable selectivity and activity in the oxidation of sulfur-containing molecules to sulfones in diesel and the selective oxidation of alcohols to ketones, using H2O2 as oxidant. For an example, the catalyst demonstrated over 96% efficiency of H2O2 and ˜100% selectivity to sulfones for the selective oxidation of sulfur-containing molecules in real diesel. Moreover, the catalysts can be separated and recycled by a simple demulsification and re-emulsification.  相似文献   

11.
Baeyer–Villiger oxidation of ketones was carried out using AlCl3 as catalyst, H2O2 (30%) as oxidant in innocuity and environmentally friendly ethanol conditions. Cyclic ketones and acyclic ketones were transformed into the corresponding lactones or esters in 5–24 h at 40–70 °C with very high conversion and selectivity. A possible reaction mechanism was also given.  相似文献   

12.
The activity of a novel Ni‐Re/Al2O3 catalyst toward partial oxidation of methane was investigated in comparison with that of a precious‐metal Rh/Al2O3 catalyst. Reactions involving CH4/O2/Ar, CH4/H2O/Ar, CH4/CO2/Ar, CO/O2/Ar, and H2/O2/Ar were performed to determine the kinetic expressions based on indirect partial oxidation scheme. A mathematical model comprising of Ergun equation as well as mass and energy balances with lumped indirect partial oxidation network was applied to obtain the kinetic parameters and then used to predict the reactant and product concentrations as well as temperature profiles within a fixed‐bed microreactor. H2 and CO production as well as H2/CO2 and CO/CO2 ratios from the reaction over Ni‐Re/Al2O3 catalyst were higher than those over Rh/Al2O3 catalyst. Simulation revealed that much smoother temperature profiles along the microreactor length were obtained when using Ni‐Re/Al2O3 catalyst. Steep hot‐spot temperature gradients, particularly at the entrance of the reactor, were, conversely, noted when using Rh/Al2O3 catalyst. © 2017 American Institute of Chemical Engineers AIChE J, 64: 1691–1701, 2018  相似文献   

13.
Ruthenium(III) complexes of the Schiff bases formed by the condensation of polymer bound aldehyde and the amines, such as 1,2‐phenylenediamine (PS‐opd), 2‐aminophenol (PS‐ap), and 2‐aminobenzimidazole (PS‐ab) have been prepared. The magnetic moment, EPR and electronic spectra suggest an octahedral structure for the complexes. The complexes of PS‐opd, PS‐ap, and PS‐ab have been assigned the formula [PS‐opdRuCl3(H2O)], [PS‐apRuCl2(H2O)2], [PS‐abRuCl3(H2O)2], respectively. These complexes catalyze oxidation of catechol using H2O2 selectively to o‐benzoquinone. The catalytic activity of the complexes is in the order [PS‐abRuCl3(H2O)2] ? [PS‐opdRuCl3(H2O)] ? [PS‐apRuCl2(H2O)2]. Mechanism of the catalytic oxidation of catechol by ruthenium(III) complex is suggested to take place through the formation of a ruthenium(II) complex and its subsequent oxidation by H2O2 to the ruthenium(III) complex. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
The possibility of the integration of the processes of H2O2 generation through isopropanol partial oxidation and ammoximation of cyclohexanone with H2O2 and NH3 TS‐1 catalysed was investigated. The ammoximation of cyclohexanone over TS‐1 with isopropanol as solvent was first studied. The results show that isopropanol can be used as solvent, and the impurities in the H2O2 solution obtained through isopropanol oxidation with only acetone needing to be separated have no harmful effects on the ammoximation of cyclohexanone, suggesting that the process of H2O2 generation through isopropanol oxidation and the ammoximation of cyclohexanone could be directly integrated. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
The influence of hydrogen peroxide on the adsorption and oxidation of carbon monoxide, methanol and ethanol adlayers on porous Pt electrodes were studied in 2 M sulphuric acid solution by means of cyclic voltammetry and differential electrochemical mass spectrometry (DEMS). The oxidation of adsorbed species is observed at electrode potentials far less negative than those required for electrochemical adsorbate oxidation. The oxidation by H2O2 is dependent on its concentration in solution, as well as on the adsorbates and their coverages. In all cases the isolated adlayers are oxidised by dissolved H2O2. However, the presence of H2O2 during adsorption partially inhibits adlayer formation from CH3OH and C2H5OH, but avoids almost completely the adsorption of carbon monoxide. The removal of the residues from the surface by dissolved hydrogen peroxide probably occurs through Oad species formed during the heterogeneous decomposition reaction of H2O2 on Pt.  相似文献   

16.
Catalytic activity of supported Pd metal catalysts (Pd metal deposited on carbon, alumina, gallia, ceria or thoria) showing almost no activity in the liquid-phase direct oxidation of H2 to H2O2 (at 295 K) in acidic medium (0.02 M H2SO4) can be increased drastically by oxidizing them using different oxidizing agents, such as perchloric acid, H2O2, N2O and air. In the case of the Pd/carbon (or alumina) catalyst, perchloric acid was found to be the most effective oxidizing agent. The order of the H2-to-H2O2 conversion activity for the perchloric-acid-oxidized Pd/carbon (or alumina) and air-oxidized other metal oxide supported Pd catalysts is as follows: Pd/alumina < Pd/carbon < Pd/CeO2 < Pd/ThO2 < Pd/Ga2O3. The H2 oxidation involves lattice oxygen from the oxidized catalysts. The catalyst activation results mostly from the oxidation of Pd metal from the catalyst producing bulk or sub-surface PdO. It also caused a drastic reduction in the H2O2 decomposition activity of the catalysts. There exists a close relationship between the H2-to-H2O2 conversion activity and/or H2O2 selectivity in the oxidation process and the H2O2 decomposition activity of the catalysts; the higher the H2O2 decomposition activity, the lower the H2-to-H2O2 conversion activity and/or H2O2 selectivity.  相似文献   

17.
BACKGROUND: The discharge of synthetic dyes by the textile industry into the environment poses concerns due to their persistence and toxicity. New efficient treatment processes are required to effectively degrade these dyes. The aim of this work was to study the degradation of a persistent dye (Drimarene Brilliant Reactive Red K‐4BL, C.I.147) using H2O2 oxidation catalysed by an Mn(III)‐saltren catalyst and to develop a kinetic model for this system. RESULTS: Dye oxidation with H2O2 was significantly improved by the addition of the catalyst. As the pH was increased from 3 to 10, the oxidation rates increased significantly. The kinetic model developed in this study was found to adequately explain the experimental results. In particular, dye oxidation can be described at high pH by pseudo‐first‐order kinetics. A Michaelis–Menton type equation was developed from the model and was found to adequately describe the effect of H2O2 and catalyst concentrations on the apparent pseudo‐first‐order rate constant. Optimum catalyst and H2O2 concentrations of 500 mg L?1 and 6.3 g L?1, respectively, were found to give maximum reaction rates. CONCLUSION: Catalytic H2O2 oxidation was found to be effective for the removal of persistent dye and the results obtained in this work are of significance for design and scale‐up of a treatment process. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
Addition of H2 to a NO/NH3/O2/H2O feed for selective catalytic reduction of nitrogen oxide over Ag/Al2O3 catalysts causes an unusual enhancement of activity, e.g., the marginal activity (<10%) of 1 wt% Ag impregnated on γ-Al2O3 or mesoporous Al2O3 modifications is boosted to nearly 100% over a broad temperature range from 200 to 550°C at a space velocity of 30,000cm3g?1h?1). Contrary, silver on SiO2 or α-Al2O3 shows no improvement of activity in the presence of H2. The effect is tentatively attributed to a higher percentage of intermediary nano-sized Ag clusters on high-surface area Al2O3 in the presence of hydrogen. This promotes oxygen activation and hence NO oxidation to reactive intermediate nitrite species. The required dispersion of Ag cannot be stabilized on SiO2 or α-Al2O3.  相似文献   

19.
In this work, we evaluated the effect of crosslinking concentration on the affinity of poly (2‐acrylamido‐2‐methyl‐1‐propansulfonic acid) (PAMPS) hydrogel‐supported Fe3O4 nanozyme towards substrates (tetramethylbenzidine (TMB) and H2O2). The peroxidase‐like catalytic activity of PAMPS/Fe3O4 nanozyme was discussed with respect to crosslinking concentration of PAMPS hydrogel for the oxidation of TMB in the presence of H2O2 at room temperature. High catalytic activity was achieved due to good dispersion of Fe3O4 nanozyme in the hydrogel network and strong affinity of PAMPS hydrogel‐supported Fe3O4 nanozyme towards substrates. The affinity between the hydrogel‐supported Fe3O4 nanozyme and substrates can be improved by regulating the crosslinking concentration of PAMPS hydrogel without other trenchant experimental conditions. In addition, the result indicated that H2O2 can be detected even at a concentration as low as 1.5 × 10?6 mol L?1 with a linear detection range of 1.5–9.8 × 10?6 mol L?1. Such investigations not only showed a new approach to improve the affinity and peroxidase‐like activity of Fe3O4 nanozyme, but also verified its potential application in bio‐detection and environmental chemistry. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43065.  相似文献   

20.
BACKGROUND: Industrial surfactants are biologically complex organics that are difficult to degrade and may cause ecotoxicological risks in the environment. Until now, many scientific reports have been devoted to the effective treatment of surfactants employing advanced oxidation processes, but there is no available experimental study dealing with the optimization and statistical design of surfactant oxidation with the well‐established H2O2/UV‐C process. RESULTS: Considering the major factors influencing H2O2/UV‐C performance as well as their interactions, the reaction conditions required for the complete oxidation of a commercial non‐ionic textile surfactant, an alkyl ethoxylate, were modeled and optimized using central composite design‐response surface methodology (CCD‐RSM). Experimental results revealed that for an aqueous non‐ionic surfactant solution at an initial chemical oxygen demand (COD) of 450 mg L?1, the most appropriate H2O2/UV‐C treatment conditions to achieve full mineralization at an initial pH of 10.5 were 47 mmol L?1 H2O2 and a reaction time of 86 min (corresponding to a UV dose of 30 kWh m?3). CONCLUSION: CCD allowed the development of empirical polynomial equations (quadratic models) that successfully predicted COD and TOC removal efficiencies under all experimental conditions employed in the present work. The process variable treatment time, followed by the initial COD content of the aqueous surfactant solution were found to be the main parameters affecting treatment performance, whereas the initial H2O2 concentration had the least influence on advanced oxidation efficiencies. The H2O2 concentration and surfactant COD were found to be more important for TOC abatement compared with COD abatement. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号