首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors have carried out the large-signal characterization of silicon-based double-drift region(DDR) impact avalanche transit time(IMPATT) devices designed to operate up to 0.5 THz using a large-signal simulation method developed by the authors based on non-sinusoidal voltage excitation.The effect of band-to-band tunneling as well as parasitic series resistance on the large-signal properties of DDR Si IMPATTs have also been studied at different mm-wave and THz frequencies.Large-signal simulation results show that DDR Si IMPATT is capable of delivering peak RF power of 633.69mW with 7.95% conversion efficiency at 94GHz for 50% voltage modulation,whereas peak RF power output and efficiency fall to 81.08 mW and 2.01% respectively at 0.5 THz for same voltage modulation.The simulation results are compared with the experimental results and are found to be in close agreement.  相似文献   

2.
An attempt is made in this paper to explore the potentiality of semiconducting type-IIb diamond as the base material of double-drift region(DDR) impact avalanche transit time(IMPATT) devices operating at both millimetre-wave(mm-wave) and terahertz(THz) frequencies. A rigorous large-signal(L-S) simulation based on the non-sinusoidal voltage excitation(NSVE) model developed earlier by the authors is used in this study. At first,a simulation study based on avalanche response time reveals that the upper cut-off frequency for DDR diamond IMPATTs is 1.5 THz, while the same for conventional DDR Si IMPATTs is much smaller, i.e. 0.5 THz. The L-S simulationresultsshowthattheDDRdiamondIMPATTdevicedeliversapeakRFpowerof7.79Wwithan18.17%conversion efficiency at 94 GHz; while at 1.5 THz, the peak power output and conversion efficiency decrease to6.19mWand8.17%respectively,taking50%voltagemodulation.AcomparativestudyofDDRIMPATTsbasedon diamond and Si shows that the former excels over the later as regards high frequency and high power performance at both mm-wave and THz frequency bands. The effect of band to band tunneling on the L-S properties of DDR diamond and Si IMPATTs has also been studied at different mm-wave and THz frequencies.  相似文献   

3.
This paper presents the simulation results of DC,small-signal and noise properties of GaP based Double Drift Region( DDR) Impact Avalanche Transit Time( IMPATT) diodes. In simulation study we have considered the flat DDR structures of IMPATT diode based on GaP,GaAs,Si and GaN( wurtzite,wz) material. The diodes are designed to operate at the millimeter window frequencies of 94 GHz and 220 GHz. The simulation results of these diodes reveal GaP is a promising material for IMPATT applications based on DDR structure with high break down voltage( V_B) as compared to Si and GaAs IMPATTs. It is also encouraging to worth note GaP base IMPATT diode shows a better output power density of 4. 9 × 10~9 W/m~2 as compared to Si and GaAs based IMPATT diode. But IMPATT diode based on GaN( wz) displays large values of break down voltage,efficiency and power density as compared to Si,GaAs and GaP IMPATTs.  相似文献   

4.
We have presented a comparative account of the high frequency prospective as well as noise behaviors of wide-bandgap 4H-SiC and 6H-SiC based on different structures of IMPATT diodes at sub-millimeter-wave frequencies up to 2.18 THz. The computer simulation study establishes the feasibility of the SiC based IMPATT diode as a high power density terahertz source. The most significant feature lies in the noise behavior of the SiC IMPATT diodes. It is noticed that the 6H-SiC DDR diode shows the least noise measure of 26.1 dB as compared to that of other structures. Further, it is noticed that the noise measure of the SiC IMPATT diode is less at a higher operating frequency compared to that at a lower operating frequency.  相似文献   

5.
A generic analytical model and the ATLAS simulation of a homojunction light emitting diode(LED) based on p+-InAs0.91Sb0.09/n0-InAs0.91Sb0.09/n+-InAs0.91Sb0.09 materials grown on lattice matched p+-GaSb substrate are presented.This LED is suitable for use as source in the optical absorption gas spectroscopy in the mid-infrared spectral region at 300 K.The various electro-optical properties of the homojunction LED are evaluated using analytical techniques and ATLAS device simulation software.The current-voltage characteristics of the structure are computed analytically and simulated,and the results are found to be in good agreement.The output power of the homojunction LED is estimated as a function of bias current under high carrier injection and compared with the reported experimental results.  相似文献   

6.
Large-signal (L-S) characterizations of double-drift region (DDR) impact avalanche transit time (IM- PATT) devices based on group III-V semiconductors such as wurtzite (Wz) GaN, GaAs and InP have been carried out at both millimeter-wave (mm-wave) and terahertz (THz) frequency bands. A L-S simulation technique based on a non-sinusoidal voltage excitation (NSVE) model developed by the authors has been used to obtain the high frequency properties of the above mentioned devices. The effect of band-to-band tunneling on the L-S properties of the device at different mm-wave and THz frequencies are also investigated. Similar studies are also carried out for DDR IMPATTs based on the most popular semiconductor material, i.e. Si, for the sake of comparison. A compara- tive study of the devices based on conventional semiconductor materials (i.e. GaAs, InP and Si) with those based on Wz-GaN shows significantly better performance capabilities of the latter at both mm-wave and THz frequencies.  相似文献   

7.
In this paper, a transmissive terahertz (THz) quarter wave plate (QWP) has been proposed to realize the linear-to-circular polarization conversion in terahertz range. This quarter wave plate is composed of two dielectric layers and one metallic layer with asymmetric cross slots. In the range of 0.894—1.378 THz, the axis ratio of proposed device is less than 3 dB, and its polarization conversion efficiency is more than 45%. The distributions of surface currents and electromagnetic field density had been proposed to understand the physical mechanism of proposed device. The linear-to-circular polarization conversion can be attributed to the asymmetric transmission along slots. Finally, the simulation results are validated by experiments in terahertz region. The proposed device has simple geometry and good performance, which can be used as a key component in applications of terahertz communications, terahertz imaging and terahertz sensing.  相似文献   

8.
Proposed and demonstrated is a novel computer modeling method for high power light emitting diodes(LEDs). It contains geometrical structure and optical property of high power LED as well as LED dies definition with its spatial and angular distribution. Merits and non-merits of traditional modeling methods when applied to high power LEDs based on secondary optical design are discussed. Two commercial high power LEDs are simulated using the proposed computer modeling method. Correlation coefficient is proposed to compare and analyze the simulation results and manufacturing specifications. The source model is precisely demonstrated by obtaining above 99% in correlation coefficient with different surface incident angle intervals.  相似文献   

9.
There is an increasing need for high performance oscillators as the faster transmission networks demand for high frequency signals. Opto-electronic oscillators (OEO) enable us to make better oscillators in terms of size, weight and power. In this paper, photonic integration is proposed for realizing the OEO with micro ring resonator (MRR) and radio-frequency (RF) amplifiers of monolithic microwave integrated circuit (MMIC), which can be used for generating 110 GHz sine wave. The OEO architecture is proposed and block diagram developed considering Silicon based MRR and three-stage RF amplifier based on GaN high-electron-mobility transistor (HEMT). A simulation model is developed according to the Klein model of MRR and is validated against the calculated performance parameters. MRR dimensions are calculated as with silicon on insulator (SOI) technology and a radius 5.27 μm for the device is derived. Free spectral range (FSR) of 48.52 nm and filter rejection ratio of 16.79 dB are obtained for this device. The proposed RF amplifier is modelled with GaN parameters derived from high frequency pinch-off model and with power amplifier considerations. The gain for this amplifier is obtained as 10.6 dB. The OEO design is developed in this project in such a way that the system can be manufactured with the existing methods.  相似文献   

10.
贾芸芳  琚成 《半导体学报》2016,37(1):014005-8
The graphene field effect transistor (GFET) has been widely studied and developed as sensors and functional devices. The first report about GFET sensing simulation on the device level is proposed. The GFET's characteristics, its responding for single strand DNA (ssDNA) and hybridization with the complimentary DNA (cDNA) are simulated based on Sentaurus, a popular CAD tool for electronic devices. The agreement between the simulated blank GFET feature and the reported experimental data suggests the feasibility of the presented simulation method. Then the simulations of ssDNA immobilization on GFET and hybridization with its cDNA are performed, the results are discussed based on the electron transfer (ET) mechanism between DNA and graphene.  相似文献   

11.
An optically controlled SiC/SiCGe lateral power transistor based on superjunction structure has been proposed, in which n-SiCGe/p-SiC superjunction structure is employed to improve device figure of merit. Performance of the novel optically controlled power transistor was simulated using Silvaco Atlas tools, which has shown that the device has a very good response to the visible light and the near infrared light. The optoelectronic responsivities of the device at 0.5 μm and 0.7 μm are 330 mA/W and 76.2 mA/W at 2 V based voltage, respectively.  相似文献   

12.
The paper mainly presents the design of beam-wave interaction of a C-band high-peak- power high-efficiency broadband klystron. The beam-wave interaction section is designed based on considerations of efficiency and bandwidth synthetically. As a part of beam-wave interaction section, buncher section is simulated by Particle-In-Cell (PIC) code to observe the bunching process of electron beam to achieve high conversion efficiency of electron beam and RF field. When it comes to the other part, output circuit is designed as a three-section filter by an output cavity loaded with Chebyshev filter and the cold test results are given. The beam-wave interaction is simulated by EGUN code and Ar- senal-MSU code respectively. The simulated results indicated that, the existence of power dips in the operating bandwidth is verified by Arsenal-MSU code, comparing proper results by EGUN code. Then, the method that design parameters are not adjusted except parameters of buncher cavities to remove potential power dips is described. What is more, the simulated results of electron optics system are given by EGUN code and Arsenal-MSU code respectively. The further hot test results of klystron prove that the whole design of beam-wave interaction is effective.  相似文献   

13.
刘继芝  陈星弼 《半导体学报》2009,30(12):125001-6
A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate.  相似文献   

14.
Colloidal silicon quantum dots (Si QDs) hold great promise for the development of printed Si electronics. Given their novel electronic and optical properties, colloidal Si QDs have been intensively investigated for optoelectronic applications. Among all kinds of optoelectronic devices based on colloidal Si QDs, QD light-emitting diodes (LEDs) play an important role. It is encouraging that the performance of LEDs based on colloidal Si QDs has been significantly increasing in the past decade. In this review, we discuss the effects of the QD size, QD surface and device structure on the performance of colloidal Si-QD LEDs. The outlook on the further optimization of the device performance is presented at the end.  相似文献   

15.
A novel structure of 4H-SiC MESFETs is proposed that focuses on surface trap suppression.Characteristics of the device have been investigated based on physical models for material properties and improved trap models.By comparing with the performance of the well-utilized buried-gate incorporated with a field-plate (BG-FP) structure,it is shown that the proposed structure improves device properties in comprehensive aspects. A p-type spacer layer introduced in the channel layer suppresses the surface trap effect and reduces the gate-drain capacitance(Cgd) under a large drain voltage.A p-type spacer layer incorporated with a field-plate improves the electric field distribution on the gate edge while the spacer layer induces less Cgd than a conventional FP.For microwave applications,4H-SiC MESFET for the proposed structure has a larger gate-lag ratio in the saturation region due to better surface trap isolation from the conductive channel.For high power applications,the proposed structure is able to endure higher operating voltage as well.The maximum saturation current density of 460 mA/mm is yielded.Also,the gate-lag ratio under a drain voltage of 20 V is close to 90%.In addition,5%and 17.8%improvements in fT and fmax are obtained compared with a BG-FP MESFET in AC simulation,respectively.Parameters and dimensions of the proposed structure are optimized to make the best of the device for microwave applications and to provide a reference for device design.  相似文献   

16.
刘军  余志平  孙玲玲 《半导体学报》2014,35(3):034010-9
A complete and accurate surface potential based large-signal model for compound semiconductor HEMTs is presented. A surface potential equation resembling the one used in conventional MOSFET models is achieved. The analytic solutions from the traditional surface potential theory that developed in MOSFET models are inherited. For core model derivation, a novel method is used to realize a direct application of the standard surfacepotentialmodelofMOSFETsforHEMTmodeling,withoutbreakingthemathematicstructure.Thehigh-order derivatives of I–V /C–V remain continuous, making the model suitable for RF large-signal applications. Furthermore, the self-heating effects and the transconductance dispersion are also modelled. The model has been verified through comparison with measured DC IV, Gummel symmetry test, CV, minimum noise figure, small-signal Sparameters up to 66 GHz and single-tone input power sweep at 29 GHz for a 475 m0.1 m InGaAs/GaAs power pHEMT, fabricated at a commercial foundry.  相似文献   

17.
In order to minimize the self-heating effect of the classic SOI devices,SOI structures with Si3N4 film as a buried insulator (SOSN) are successfully formed using epitaxial layer transfer technology for the first time.The new SOI structures are investigated with high-resolution cross-sectional transmission electron microscopy and spreading resistance profile.Experiment results show that the buried Si3N4 layer is amorphous and the new SOI material has good structural and electrical properties.The output current characteristics and temperature distribution are simulated and compared to those of standard SOI MOSFETs.Furthermore,the channel temperature and negative differential resistance are reduced during high-temperature operation,suggesting that SOSN can effectively mitigate the self-heating penalty.The new SOI device has been verified in two-dimensional device simulation and indicated that the new structures can reduce device self-heating and increase drain current of the SOI MOSFET.  相似文献   

18.
An analytical surface potential model for the single material double work function gate(SMDWG) MOSFET is developed based on the exact resultant solution of the two-dimensional Poisson equation. The model includes the effects of drain biases, gate oxide thickness, different combinations of S-gate and D-gate length and values of substrate doping concentration. More attention has been paid to seeking to explain the attributes of the SMDWG MOSFET, such as suppressing drain-induced barrier lowering(DIBL), accelerating carrier drift velocity and device speed. The model is verified by comparison to the simulated results using the device simulator MEDICI. The accuracy of the results obtained using our analytical model is verified using numerical simulations. The model not only offers the physical insight into device physics but also provides the basic designing guideline for the device.  相似文献   

19.
This paper presents 3-D simulation of angled strike heavy-ion induced charge collection in domestic silicon-germanium heterojunction bipolar transistors (SiGe HBTs). 3D damaged model of SiGe HBTs single-event effects (SEE) is built by TCAD simulation tools to research ions angled strike dependence. We select several different strike angles at variously typical ions strike positions. The charge collection mechanism for each terminal is identified based on analysis of the device structure and simulation results. Charge collection induced by angled strike ions presents a complex situation. Whether the location of device ions enters, as long as ions track through the sensitive volume, it will cause vast charge collection. The amount of charge collection of SiGe HBT is not only related to length of ions track in sensitive volume, but also influenced by STI and distance between ions track and electrodes. The simulation model is useful to research the practical applications of SiGe HBTs in space, and provides a theoretical basis for the further radiation hardening.  相似文献   

20.
The surface and optical properties of silicon nitride samples with different compositions were investigated.The samples were deposited on InP by inductively coupled plasma chemical vapor deposition using different NH3 flow rates.Atomic force microscopy measurements show that the surface roughness is increased for the samples with both low and high NH3 flow rates.By optimization,when the NH3 flow rate is 6 sccm,a smooth surface with RMS roughness of 0.74 nm over a 5 × 5μm2 area has been achieved.X-ray photoelectron spectroscopy measurements reveal the Si/N ratio of the samples as a function ofNH3 flow rate.It is found that amorphous silicon is dominant in the samples with low NH3 flow rates,which is also proved in Raman measurements.The bonding energies of the Si and N atoms have been extracted and analyzed.Results show that the bonding states of Si atoms transfer from Si0 to Si+4 as the NH3 flow rate increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号