首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CdS thin films were deposited on polyethylene naphthalate substrates by means of the chemical bath deposition technique in an ammonia-free cadmium-sodium citrate system. Three sets of CdS films were grown in precursor solutions with different contents of Cd and thiourea maintaining constant the concentration ratios [Cd]/[thiourea] and [Cd]/[sodium citrate] at 0.2 and 0.1 M/M, respectively. The concentrations of cadmium in the reaction solutions were 0.01, 7.5 × 10−3 and 6.8 × 10−3 M, respectively. The three sets of CdS films were homogeneous, hard, specularly reflecting, yellowish and adhered very well to the plastic substrates, quite similar to those deposited on glass substrates. The structural and optical properties of the CdS films were determined from X-ray diffraction, optical transmission and reflection spectroscopy and atomic force microscopy measurements. We found that the properties of the films depend on both the amount of Cd in the growth solutions and on the deposition time. The increasing of Cd concentration in the reaction solution yield to thicker CdS films with smaller grain size, shorter lattice constant, and higher energy band gap. The energy band gap of the CdS films varied in the range 2.42-2.54 eV depending on the precursor solution. The properties of the films were analyzed in terms of the growth mechanisms during the chemical deposition of CdS layers.  相似文献   

2.
Nanocrystalline cadmium sulfide CdS thin films with relevance for optical applications were synthesized from aqueous solutions by chemical bath deposition. Grazing incidence X-ray diffraction shows that the films formed on glass or silicon substrates are made up of nanocrystalline particles. About 80% of the particles have a diameter of 5 ± 1 nm. The nanoparticles have either sphalerite or wurtzite structure. The presence of the sphalerite phase is a signature of a highly non-equilibrium state of the nanocrystalline film. Kinetic studies show that the size of the nanocrystals and the relative fraction of the two phases do not depend on the deposition time once it exceeds a duration of 30 min. For longer times, the particle characteristics remain constant while the thickness of the film grows. Thermodynamical analysis of ionic equilibria allows to choose the reaction bath composition for the formation of cadmium hydroxide Cd(OH)2. The experiments provide strong evidence that the beginning of the deposition of CdS is accompanied by a formation of cadmium hydroxide Cd(OH)2.  相似文献   

3.
Highly oriented CdS thin films with thicknesses greater than 1 μm were deposited using the oscillating chemical bath deposition technique with multiple dips at 75 °C, and from 15 to 75 min as deposition times. Samples with different thicknesses were deposited by repeating the chemical deposition process one, two and three times. All CdS films present the α-greenockite hexagonal structure with (002) as the preferential orientation. Band-gap energy values ranged from 2.35 to 2.42 eV, being the smaller value for the two dip processes. Energy dispersion spectroscopy measurements show good stoichiometry of the CdS films with 4.3 at.% as the maximum Cd variation.  相似文献   

4.
In this work, we report the properties of chemically deposited CdS thin films in a cadmium-sodium citrate system. This chemical bath deposition process does not employ ammonia. We deposited four series of films at different cadmium content in the chemical bath process and determined their properties. The obtained information can be very useful for the optimization of the deposition process in order to reduce the amount of toxic chemical waste, mainly Cd-containing waste. The structural and optical properties of the CdS films were determined from X-ray diffraction, optical transmission and reflection spectroscopy and scanning electron microscopy measurements. We found that the properties of the films are very sensitive to the amount of cadmium in the deposition process. The process allows the deposition of good quality CdS thin films using 1.12, 0.84 and 0.76 mg of cadmium per milliliter of reaction solution.  相似文献   

5.
D. Lamb  S.J.C. Irvine 《Thin solid films》2009,518(4):1222-1173
Polycrystalline cadmium oxide has been deposited on to glass substrates for use as transparent conducting oxides for thin film photovoltaics. The films were deposited by metal organic chemical vapour deposition (MOCVD). The oxygen precursor was tertiary butanol, which was chosen to avoid the pre-reaction often seen for more reactive oxygen sources when combined with the cadmium source, dimethylcadmium. This combination of precursors promoted a surface reaction to yield high quality CdO films with large grain size. The cadmium oxide, deposited at 280 °C, yielded a minimum resistivity of 3.9 × 10− 4 Ω cm whilst maintaining an average transmittance between 450 and 2500 nm of 80%. This exceptional near-IR transmittance coupled with good electrical conduction is well suited to match the infrared requirements of multi-junction photovoltaics designed to capture greater proportions of the solar spectrum.  相似文献   

6.
X.L. Tong  D.S. Jiang  Q.Y. Yan  W.B. Hu  Z.M. Liu  M.Z. Luo 《Vacuum》2008,82(12):1411-1414
The effect of laser fluence (laser incident energy in the range of 0.5-1.5 mJ/pulse with the same laser spot size of 0.5 mm × 0.7 mm) on the structural quality and optical properties synthesized by femtosecond pulsed-laser deposition has been studied. The structural quality and optical properties of the deposited CdS thin films were investigated by X-ray diffraction, atomic force microscopy and photoluminescence measurement. The studies revealed an improvement in the structural quality and optical properties of the CdS thin films with increasing the laser fluence in some range. However, too high laser fluence could lead to the structural quality and optical properties of the CdS thin films to degrade. We defined the optimum laser incident energy was around 1.2 mJ/pulse. And the kinetic energy of the plasma produced by femtosecond laser strongly affects the structure and properties of the deposited CdS thin films.  相似文献   

7.
Chemically deposited CdS thin films were analyzed in this work by means of the spectroscopic ellipsometry technique. The CdS thin films were deposited from an ammonia-free process at short durations in order to obtain information about the layer microstructure and kinetic growth process. We found that the conditions of the ammonia-free reaction solution promote the ion-by-ion deposition process at the early growth stages yielding a compact, high refraction index and highly crystalline oriented CdS layers. Using a concentration of 1.82 mg/ml of cadmium in the reaction solution, the resulting films possess a double layer microstructure which consists of an inner compact layer and an external porous one. The inner layer is developed during the first 15 min of deposition time and it reaches a thickness around of 80 nm. After this time and on this inner layer of CdS, it grows an external porous layer whose thickness increases with the deposition time. The formation of the CdS compact layer at the early stages is related with the ion-by-ion growth mechanism. The subsequent CdS porous layer is formed during the cluster-by-cluster growth stage at longer deposition times. By reducing the cadmium concentration in reaction solution down to 0.76 mg/ml, maintaining constant molar ratio concentrations of Cd/complexing and Cd/thiourea, the chemically deposited CdS films develop only the inner compact layer with a thickness of about 80 nm after 35 min of deposition time.  相似文献   

8.
Chenhuan Li 《Thin solid films》2012,520(7):2520-2525
Monodisperse cadmium sulfide nanotubes (CdS NTs) with a diameter of 100 nm were synthesized on indium-doped tin oxide glass substrates using chemical bath deposition and self-sacrificial template technique. This CdS thin film was characterized by transmission electron microscope, scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis spectrophotometer. This film gave a short circuit photocurrent of 4.4 mA/cm2, an open circuit photovoltage of 0.75 V, a fill factor of 0.49, and an overall conversion efficiency of 1.29% under a simulated solar illumination of 100 mW/cm2. All these photoelectrochemical properties of the films were dependent on the microstructure of the nanotubes and the thickness of the film. A facile and efficient way to prepare CdS-based photoelectrodes for photoelectrochemical cells was provided in this report.  相似文献   

9.
A novel and simple chemical route was developed for the deposition of ZnO film from aqueous solution, integrating the merits of successive ionic layer adsorption and reaction and chemical bath deposition. ZnO thin films on glass and Si(1 0 0) substrates were deposited with the precursor of zinc-ammonia complex. As-deposited ZnO film exhibits good crystallinity with the hexagonal wurtzite crystalline structure and the preferential orientation along (0 0 2) plane. With a dense and continuous appearance, the film is composed of ZnO particles in even size of 200-300 nm. Under the excitation of 340 nm, strong and sharp near band gap emission (∼391 nm) dominates the photoluminescence spectra with several weak emission peaks related to the deep level (∼450-500 nm). In addition, the mechanism for the deposition process of ZnO from aqueous solution was preliminarily discussed.  相似文献   

10.
Tin sulfide (SnS) is one of the most promising materials for photovoltaics. Here we report on the preparation as well as chemical, structural and physical characterization of the Mo/p-SnS/n-CdS/ZnO heterojunctions. The SnS thin films were grown by hot wall deposition method on the Mo-coated glass substrates at 270-350 °C. The crystal structure and elemental composition were examined by X-ray diffraction and Auger electron spectroscopy methods. The CdS buffer layers were deposited onto the SnS films by chemical bath deposition. The ZnO window layers were deposited by a two step radio frequency magnetron sputtering, resulting in a ZnO bilayer structure: the first layer consists of undoped i-ZnO and the second of Al-doped n-ZnO. The best junctions have an open circuit voltage of 132 mV, a short circuit current density of 3.6 mA/cm2, a fill-factor of 0.29 and efficiency up to 0.5%.  相似文献   

11.
A study was performed to reduce the CdS film thickness in CdTe thin film solar cells to minimize losses in quantum efficiency. Using close space sublimation deposition for CdS and CdTe a maximum efficiency of ~ 9.5% was obtained with the standard CdS film thickness of ~ 160 nm. Reduction of the film CdS thickness to less than 100 nm leads to poor cell performance with ~ 5% efficiency, mainly due to a lower open circuit voltage. An alternative approach has been tested to reduce the CdS film thickness (~ 80 nm) by depositing a CdS double layer. The first CdS layer was deposited at high substrate temperature in the range of 520-540 °C and the second CdS layer was deposited at low substrate temperature of ~ 250 °C. The cell prepared using a CdS double layer show better performance with cell efficiency over 10%. Quantum efficiency measurement confirmed that the improvement in the device performance is due to the reduction in CdS film thickness. The effect of double layer structure on cell performance is also observed with chemical bath deposited CdS using fluorine doped SnO2 as substrate.  相似文献   

12.
Cadmium sulphide (CdS) films were deposited by the pulse plating technique at room temperature and at different duty cycles in the range of 6–50% using AR grade 0.25 M cadmium sulphate and 0.30 M sodium thiosulphate at a deposition potential of −0.75 V (SCE). The total deposition time was kept constant at 1 h. The thickness of the films were around 2.0 μm. X-ray diffraction (XRD) studies indicate the formation of polycrystalline films with the cubic structure. The crystallite size increased from 23.0 to 27.5 nm as the duty cycle increased from 10 to 50%. Optical absorption studies indicated a direct band gap in the range of 2.40–2.80 eV as the duty cycle is decreased. XPS studies indicated the formation of CdS. Photoelectrochemical (PEC) cell measurements made with the photoelectrodes deposited at 50% duty cycle have exhibited higher conversion efficiency compared to earlier reports.  相似文献   

13.
Cadmium Sulfide CdS thin films were deposited by chemical bath deposition technique using ethanolamine as complexing agent instead of commonly used ammonia to avoid its toxicity and volatility during film preparation. In order to investigate the film growth mechanism samples were prepared with different deposition times. A set of substrates were dropped in the same bath and each 30 minutes a sample is withdrawn from the bath, by this way all the obtained films were grown in the same condition. The films structure was analyzed by X rays diffraction. In early stage of growth the obtained films are amorphous, with increasing the deposition time, the films exhibits a pure hexagonal structure with (101) preferential orientation. The film surface morphology was studied by atomic force microscopy. From these observations we concluded that the early growth stage starts in the 3D Volmer-Weber mode, followed by a transition to the Stransky-Krastanov mode with increasing deposition time. The critical thickness of this transition is 120 nm. CdS quantum dots were formed at end of the film growth. The optical transmittance characterization in the UV-Visible range shows that the prepared films have a high transparency ranging from 60 to 80% for photons having wavelength greater than 600 nm.  相似文献   

14.
CdS thin films doped with metal-organic salts were grown on glass substrates at 90 °C by the chemical bath deposition technique. Metal-organic salts such as zinc acetate, chromium acetylacetonate, ammonium fluoride, aluminum nitrate, tin acetate and indium acetate were used. The chemical bath was prepared with cadmium acetate, ammonium acetate, thiourea and ammonium hydroxide. In the case of un-doped films, the S/Cd ratio was varied by changing the thiourea in the range 1-12. The best optical, structural and electrical properties were found for S/Cd = 2. The doped films were prepared by always keeping the ratio S/Cd constant at 2. The band gap (Eg) of doped and un-doped films was evaluated from transmittance spectra, where films with lower sulfur concentration exhibited higher Eg. X-ray analysis showed that both un-doped and doped films were polycrystalline with preferential orientation along the (111) direction and with the zincblende structure in all cases. The dark electrical results showed that CdS doped with Zn (1 at.%) exhibited the lowest resistivity values of 10 Ω cm.  相似文献   

15.
Thin films of crystalline HgCr2S4 have been deposited on glass substrates at low temperature as low as 65 °C using a chemical bath deposition method. Typical thickness of the deposited HgCr2S4 thin films was 264 nm.The films were composed of closely packed irregular grains of 165-175 nm in diameter. The X-ray diffraction analysis and the selected area electron diffraction analysis revealed the deposited thin films were polycrystalline with highly (2 2 0) preferential orientation. The films exhibit a pure faint black. Their direct band gap energy was 2.39 eV with room temperature electrical resistivity of the order of 10−3 Ω cm.  相似文献   

16.
Cadmium sulfide (CdS) nanocrystalline thin films were prepared using the microwave-assisted chemical bath deposition method onto glass substrates at 80 °C. Aqueous solutions of either cadmium chloride or cadmium acetate and thiourea were used as sources of Cd2+ and S2− ions, respectively. Two sets of samples with different concentrations were prepared. A microwave oven was used as a heating source to synthesize the nanocrystalline CdS thin films. The prepared thin films had a good adhesion with no pinholes. These films were examined for their structural and surface morphologies by X-ray diffraction (XRD), scanning electron microscopy, and atomic force microscopy. The optical properties were investigated using UV-vis spectrophotometer, photoluminescence, and Raman spectroscopy. Particle size values obtained from XRD were compared with these calculated using effective mass models. The values of optical band gaps according to optical transmission measurements decreased as the ion source molar concentration increased.  相似文献   

17.
In this work, CuInSe2 based flexible photovoltaic cells have been fabricated completely using non-vacuum low-cost techniques. Thin films were deposited on molybdenum thin foil substrates by electrodeposition using a buffered aqueous electrolyte with the deposition of subsequent layers performed by spray pyrolysis. In addition, the buffer layer CdS was replaced with a wider bandgap ZnS (3.7 eV) and analysis undertaken of the fabrication pathway, morphological and compositional changes resulting from the different precursor route. The deposited films were annealed in a Se atmosphere at 450 °C. The influence of annealing temperature and time on the properties of the films are briefly discussed. Characterisation of thin films was performed using aqueous electrolyte contacts. Capacitance measurements were made as a function of applied bias on thin films deposited on metal substrates with blocking electrolyte contacts where analysis of the impedance gave values of the space charge capacitance from which the doping density and flat band potential were derived. The structural characterisation was carried out using X-ray diffraction and Raman spectroscopy. The structure and device properties of Mo (SS)/CuInSe2/ZnS/n+-ZnO/Ni were characterized using current-voltage technique and photocurrent spectroscopy.  相似文献   

18.
PbS nanocrystalline thin films were deposited on glass substrates using chemical bath technique at different solution temperatures and various deposition times. The thickness of the films was in the range 600-1000 nm. The structure and the crystallite size of these films were studied by X-ray diffraction. The optical properties, absorption, transmission, and reflection, as a function of thickness were measured. The influence of thermal treatment under various annealing temperatures on the optical properties for some deposited films was studied and analyzed.  相似文献   

19.
The deposition of thin copper based films onto carbon steel surface is described, using premixed flames with different oxygen/methane ratios doped with aqueous copper nitrate as precursor. We investigated the chemical properties of the copper as a function of oxygen/methane ratio. Using fuel rich flames (equivalence ratio 0.665), the deposited copper film was entirely metallic. When the equivalence ratio was increased to 0.850 or greater the copper film contained predominantly Cu2 +. Furthermore, the flame can be used for post deposition modification, as demonstrated by reduction of Cu2 + containing films to Cu metal. All the films were characterised by X-ray diffraction, Raman and scanning electron microscopy (SEM). A rotating sample holder was employed to avoid over heating of the sample and the critical variables such as sample height in the flame and deposition time were optimised. Deposition for 20 min, which translated to a total residence time in the flame of approx. 76 s, produces metallic copper films of thickness 169 ± 18 nm as determined by anodic stripping and SEM. The microstructure of the metallic films was clearly composed of fused copper spheres of 100-150 nm, which are probably formed in the flame and subsequently deposited on the surface with good adhesion.  相似文献   

20.
Cadmium sulfide (CdS) thin films were deposited on glass substrate at room temperature by successive ionic layer adsorption and reaction method (SILAR). The deposition parameters such as rinsing time, rinsing cycle and concentration of precursor solution were varied during the preparation of the samples. The structural characterization and optical characterization were carried out. The deposited films by lower growth rate and lower precursor concentration solutions were having mixed hexagonal and cubic phases. Thickness dependence of the optical band gap energy was evaluated and it varies from 2.46 to 2.32 eV in the thickness range 38–330 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号