首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work proposes an efficient combined treatment for the decontamination of a pesticide-containing wastewater resulting from phytopharmaceutical plastic containers washing, presenting a moderate organic load (COD = 1662-1960 mg O2 L−1; DOC = 513-696 mg C L−1), with a high biodegradable organic carbon fraction (81%; BOD5 = 1350-1600 mg O2 L−1) and a remaining recalcitrant organic carbon mainly due to pesticides. Nineteen pesticides were quantified by LC-MS/MS at concentrations between 0.02 and 45 mg L−1 (14-19% of DOC). The decontamination strategy involved a sequential three-step treatment: (a) biological oxidation process, leading to almost complete removal of the biodegradable organic carbon fraction; (b) solar photo-Fenton process using CPCs, enhancing the bio-treated wastewater biodegradability, mainly due to pesticides degradation into low-molecular-weight carboxylate anions; (c) and a final polishing step to remove the residual biodegradable organic carbon, using a biological oxidation process. Treatment performance was evaluated in terms of mineralization degree (DOC), pesticides content (LC-MS/MS), inorganic ions and low-molecular-weight carboxylate anions (IC) concentrations. The estimated phototreatment energy necessary to reach a biodegradable wastewater, considering pesticides and low-molecular-weight carboxylate anions concentrations, Zahn-Wellens test and BOD5/COD ratio, was only 2.3 kJUV L−1 (45 min of photo-Fenton at a constant solar UV power of 30 W m−2), consuming 16 mM of H2O2, which pointed to 52% mineralization and an abatement higher than 86% for 18 pesticides. The biological oxidation/solar photo-Fenton/biological oxidation treatment system achieved pesticide removals below the respective detection limits and 79% mineralization, leading to a COD value lower than 150 mg O2 L−1, which is in agreement with Portuguese discharge limits regarding water bodies.  相似文献   

2.
The biological treatment of a high-strength p-nitrophenol (PNP) wastewater in an aerobic Sequencing Batch Reactor (SBR) has been studied. A specific operational strategy was applied with the main aim of developing a K-strategist PNP-degrading activated sludge. The enrichment of a K-strategist microbial population was performed using a non-acclimated biomass coming from a municipal WWTP as inoculum, and following a feeding strategy in which the PNP-degrading biomass was under endogenous conditions during more than 50% of the aerobic reaction phase. Hundred per cent of PNP removal was achieved in the whole operating period with a maximum specific PNP loading rate of 0.26 g PNP g−1 VSS d−1. A kinetic characterization of the obtained PNP-degrading population was carried out using respirometry assays in specifically designed batch tests. With the experimental data obtained a kinetic model including substrate inhibition has been used to describe the time-course of the PNP concentration and specific oxygen uptake rate (SOUR), simultaneously. The kinetic parameters obtained through optimization, validated with an additional respirometric test, were kmax = 1.02 mg PNP mg−1 COD d−1, Ks = 1.6 mg PNP L−1 and Ki = 54 mg PNP L−1. The values obtained for the Ks and kmax are lower than those reported in the literature for mixed populations, meaning that the biomass is a K-strategist type, and therefore demonstrating the success of the operational strategy imposed to obtain such a K-strategist population. Moreover, our measured Ki value is higher than those reported by most of the bibliographic references; therefore the acclimated activated sludge used in this work was evidently more adapted to PNP inhibition than the other reported cultures.  相似文献   

3.
The results of using the nitrogen fixing symbiotic system AzollaAnabaena to improve the quality of treated urban wastewater, particularly on what concerns phosphorus removal efficiencies (40–65%), obtained in continuous assays performed during the past few years and presented earlier, were very promising. Nevertheless, the presence of combined nitrogen in some wastewaters can compromise the treatment efficiency. The main goal of this work was to compare plants behaviour in wastewater and in mineral media with and without added nitrogen.Azolla filiculoides's specific growth rates in wastewater and in mineral media without added nitrogen or with low nitrate concentration were very similar (0.122 d−1–0.126 d−1), but decreased in the presence of ammonium (0.100 d−1). The orthophosphate removal rate coefficients were similar in all the growth media (0.210 d−1–0.232 d−1), but ammonium removal rate coefficient in wastewater was higher (0.117 d−1) than in mineral medium using that source of nitrogen (0.077 d−1).The ammonium present in wastewater, despite its high concentration (34 mg N L−1), didn't seem to inhibit growth and nitrogen fixation, however, in mineral media, ammonium (40 mg N L−1) was found to induce, respectively, 18% and 46% of inhibition.  相似文献   

4.
Complete degradation of a pesticide mixture by a combination of a photo-Fenton pretreatment and an activated-sludge batch reactor is demonstrated. Four commercial pesticides, Laition, Metasystox, Sevnol and Ultracid were chosen for this experiment. The active ingredients are, respectively, dimethoate, oxydemeton-methyl, carbaryl and methidathion. The original pesticide concentration was 200 mg L−1. Biotreatment began after 31% photocatalytic mineralization, which after 5 h in a 6-L stirred batch-mode tank reactor with non-acclimated activated sludge, leaves the photo-Fenton effluent completely degraded. This biotreatment time is shorter than commonly found in municipal wastewater treatment plants (∼8-10 h). Therefore, the combined process is effective for rapid pesticide degradation in wastewater with complete removal of parent compounds and the associated DOC concentration. Nonetheless, assessment of this technology should take into account higher pesticide concentrations and how this factor affects both the photocatalytic and the biological oxidation.  相似文献   

5.
This study focuses on the removal of 32 selected micropollutants (pharmaceuticals, corrosion inhibitors and biocides/pesticides) found in an effluent coming from a municipal wastewater treatment plant (MWTP) based on activated sludge. Dissolved organic matter was present, with an initial total organic carbon of 15.9 mg L−1, and a real global quantity of micropollutants of 29.5 μg L−1. The treatments tested on the micropollutants removal were: UV-light emitting at 254 nm (UV254) alone, dark Fenton (Fe2+,3+/H2O2) and photo-Fenton (Fe2+,3+/H2O2/light). Different irradiation sources were used for the photo-Fenton experiences: UV254 and simulated sunlight. Iron and H2O2 concentrations were also changed in photo-Fenton experiences in order to evaluate its influence on the degradation. All the experiments were developed at natural pH, near neutral. Photo-Fenton treatments employing UV254, 50 mg L−1 of H2O2, with and without adding iron (5 mg L−1 of Fe2+ added or 1.48 mg L−1 of total iron already present) gave the best results. Global percentages of micropollutants removal achieved were 98 and a 97% respectively, after 30 min of treatments. As the H2O2 concentration increased (10, 25 and 50 mg L−1), best degradations were observed. UV254, Fenton, and photo-Fenton under simulated sunlight gave less promising results with lower percentages of removal.The highlight of this paper is to point out the possibility of the micropollutants degradation in spite the presence of DOM in much higher concentrations.  相似文献   

6.
A novel process was developed to induce a simultaneous oxidation of ammonia and denitrification in a single system consisting of two chambers separated by a cation exchange membrane. One was an anoxic chamber and the other was an aerobic chamber. The maximum mass flux via the membrane was calculated as 0.83 mg NH4+-N/m2 s in a batch test when the initial concentration of NH4+ was 700 mg N/L. And it was observed that NO3 and NO2 moved via the membrane in a reverse direction when NH4+ was transported. When the system was operated in a continuous mode by feeding a wastewater containing glucose and NH4+, it was observed that soluble chemical oxygen demand and NH4+ were simultaneously removed showing 99% and 71  86% of efficiency, respectively. Denitrification occurred in the anoxic chamber and nitrification was carried out in the aerobic chamber.  相似文献   

7.
Soil aquifer treatment of artificial wastewater under saturated conditions   总被引:2,自引:0,他引:2  
A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen and phosphate, using high strength artificial wastewater. The removal rates were determined under a combination of constant hydraulic loading rates (HLR) and variable COD concentrations as well as variable HLR under a constant COD. Within the range of COD concentrations considered (42 mg L−1-135 mg L−1) it was found that at fixed hydraulic loading rate, a decrease in the influent concentrations of dissolved organic carbon (DOC), biochemical oxygen demand (BOD), total nitrogen and phosphate improved their removal efficiencies. At the high COD concentrations applied residence times influenced the redox conditions in the soil column. Long residence times were detrimental to the removal process for COD, BOD and DOC as anoxic processes and sulphate reduction played an important role as electron acceptors. It was found that total COD mass loading within the range of 911 mg d−1-1780 mg d−1 applied as low COD wastewater infiltrated coupled with short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. The opposite was true for organic nitrogen where relatively high concentrations coupled with long residence time gave better removal efficiency.  相似文献   

8.
Degradation of the emerging contaminant ibuprofen in water by photo-Fenton   总被引:3,自引:0,他引:3  
In this study the degradation of the worldwide Non-Steroidal Anti-Inflammatory Drug (NSAID) ibuprofen (IBP) by photo-Fenton reaction by use of solar artificial irradiation was carried out. Non-photocatalytic experiments (complex formation, photolysis and UV/Vis-H2O2 oxidation) were executed to evaluate the isolated effects and additional differentiated degradation pathways of IBP. The solar photolysis cleavage of H2O2 generates hydroxylated-IBP byproducts without mineralization. Fenton reaction, however promotes hydroxylation with a 10% contamination in form of a mineralization. In contrast photo-Fenton in addition promotes the decarboxylation of IBP and its total depletion is observed. In absence of H2O2 a decrease of IBP was observed in the Fe(II)/UV-Vis process due to the complex formation between iron and the IBP-carboxylic moiety. The degradation pathway can be described as an interconnected and successive principal decarboxylation and hydroxylation steps. TOC depletion of 40% was observed in photo-Fenton degradation. The iron-IBP binding was the key-point of the decarboxylation pathway. Both decarboxylation and hydroxylation mechanisms, as individual or parallel process are responsible for IBP removal in Fenton and photo-Fenton systems. An increase in the biodegradability of the final effluent after photo-Fenton treatment was observed. Final BOD5 of 25 mg L−1 was reached in contrast to the initial BOD5 shown by the untreated IBP solution (BOD5 < 1 mg L−1). The increase in the biodegradability of the photo-Fenton degradation byproducts opens the possibility for a complete remediation with a final post-biological treatment.  相似文献   

9.
This work presents the distribution and the partition of mercury (Hg) in the Curuai floodplain lakes along the Amazon River. The maximum Total Filtered Hg (T-FHg) concentrations in the floodplain lakes (28 to 52 pmol L− 1) coincide with the maximum T-FHg concentrations of the Amazon River and are measured during the flooding period. The lowest T-FHg values (3 to 5 pmol L− 1) are observed during the flood peak of the mainstream, during the rainy season, when waters are diluted by the local rainfall. In this system, Hg is mainly transported in the particulate phase, confirmed by elevated values of the Hg partition coefficient (4.77 < Kd (Hg) < 5.83 L kg− 1). The highest Total Particulate Hg (T-PHg) concentrations (47–478 pmol L− 1) in the lakes are measured during the dry season when they are isolated from the mainstream. This enrichment is due to the elevated TSS content associated to the re-suspension of the bottom sediments by the wind action and the bioturbation in shallow water lakes.In the flooded system, the lakes show different geochemical characteristics that control the Hg distribution and partition. In the white water (WW) lakes, characterized by oxidative neutral waters and highest TSS contents (till 2041 mg L− 1), the T-PHg is associated to the particulate organic matter mainly during the dry season, while the T-FHg and T-FMn concentrations are correlated. In the black water (BW) lakes that show reductive pH conditions and lowest TSS load (2 to 52 mg L− 1), P-iron and T-PHg display a positive relationship whereas the redox conditions favor the desorption of Hg from the particulate to the filtered phase.The mercury mass budget estimated in this study confirms that the Curuai floodplain system acts as a particulate mercury trap, with a net storage of particulate Hg of 150 kg PHg year− 1.  相似文献   

10.
Characterization and treatment of a real pharmaceutical wastewater containing 775 mg dissolved organic carbon per liter by a solar photo-Fenton/biotreatment were studied. There were also many inorganic compounds present in the matrix. The most important chemical in this wastewater was nalidixic acid (45 mg/L), an antibiotic pertaining to the quinolone group. A Zahn-Wellens test demonstrated that the real bulk organic content of the wastewater was biodegradable, but only after long biomass adaptation; however, the nalidixic acid concentration remained constant, showing that it cannot be biodegraded. An alternative is chemical oxidation (photo-Fenton process) first to enhance biodegradability, followed by a biological treatment (Immobilized Biomass Reactor - IBR). In this case, two studies of photo-Fenton treatment of the real wastewater were performed, one with an excess of H2O2 (kinetic study) and another with controlled H2O2 dosing (biodegradability and toxicity studies). In the kinetic study, nalidixic acid completely disappeared after 190 min. In the other experiment with controlled H2O2, nalidixic acid degradation was complete at 66 mM of H2O2 consumed. Biodegradability and toxicity bioassays showed that photo-Fenton should be performed until total degradation of nalidixic acid before coupling a biological treatment. Analysis of the average oxidation state (AOS) demonstrated the formation of more oxidized intermediates. With this information, the photo-Fenton treatment time (190 min) and H2O2 dose (66 mM) necessary for adequate biodegradability of the wastewater could be determined. An IBR operated in batch mode was able to reduce the remaining DOC to less than 35 mg/L. Ammonium consumption and NO3 generation demonstrated that nitrification was also attained in the IBR. Overall DOC degradation efficiency of the combined photo-Fenton and biological treatment was over 95%, of which 33% correspond to the solar photochemical process and 62% to the biological treatment.  相似文献   

11.
In this work, the photocatalytic degradation of the antibiotic sulfamethoxazole (SMX) by solar photo-Fenton at pilot plant scale was evaluated in distilled water (DW) and in seawater (SW). Degradation and mineralization of SMX were strongly hindered in SW compared to DW. The influence of H2O2 and iron concentration on the efficiency of the photocatalytic process was evaluated. An increase in iron concentration from 2.6 to 10.4 mg L−1 showed only a slight improvement in SMX degradation and mineralization. However, an increase in H2O2 concentration up to 120 mg L−1 during photo-Fenton in DW decreased SMX solution toxicity from 85% to 20%, according to results of Daphnia magna bioassays. The same behaviour was not observed after photo-Fenton treatment in SW. Despite 45% mineralization in SW, toxicity increased from 16% to 86% as shown by Vibrio fischeri bioassays, which suggests that the intermediates generated in SW are different from those in DW. A SMX degradation pathway during the photo-Fenton treatment in DW is proposed.  相似文献   

12.
This paper explores the degradation of a model pollutant, bisphenol A, by an advanced oxidation process that combines sonolysis, Fe2+, and TiO2 in a photoassisted process. Experiments were done under saturated oxygen conditions. The effect of different Fe2+ (0.56 and 5.6 mg/L) and TiO2 (10 and 50 mg/L) concentrations was investigated on both the elimination and mineralization of the pollutant. A pronounced synergistic effect that led to the complete and rapid elimination of dissolved organic carbon (DOC) was observed even at low catalyst loadings. In this system, almost a complete removal of DOC (93%) was observed after 4 h using 10 and 5.6 mg/L of TiO2 and Fe2+, respectively, whereas at the same time, only 5, 6, and 22% of DOC was removed by an individual process alone (TiO2 photocatalysis, ultrasound, and photo-Fenton, respectively). In this system, ultrasound has the principal role of eliminating the initial substrate and providing hydrogen peroxide for the photocatalytic systems, while photo-Fenton and TiO2 photocatalysis are mainly responsible for the transformation of the intermediates in CO2 and H2O. The role of H2O2 generated from the sonochemical process is also discussed.  相似文献   

13.
This work investigated the application of a solar driven advanced oxidation process (solar photo-Fenton), for the degradation of antibiotics at low concentration level (μg L−1) in secondary treated domestic effluents at a pilot-scale. The examined antibiotics were ofloxacin (OFX) and trimethoprim (TMP). A compound parabolic collector (CPC) pilot plant was used for the photocatalytic experiments. The process was mainly evaluated by a fast and reliable analytical method based on a UPLC-MS/MS system. Solar photo-Fenton process using low iron and hydrogen peroxide doses ([Fe2+]0 = 5 mg L−1; [H2O2]0 = 75 mg L−1) was proved to be an efficient method for the elimination of these compounds with relatively high degradation rates. The photocatalytic degradation of OFX and TMP with the solar photo-Fenton process followed apparent first-order kinetics. A modification of the first-order kinetic expression was proposed and has been successfully used to explain the degradation kinetics of the compounds during the solar photo-Fenton treatment. The results demonstrated the capacity of the applied advanced process to reduce the initial wastewater toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba) and the water flea Daphnia magna. The phytotoxicity of the treated samples, expressed as root growth inhibition, was higher compared to that observed on the inhibition of seed germination. Enterococci, including those resistant to OFX and TMP, were completely eliminated at the end of the treatment. The total cost of the full scale unit for the treatment of 150 m3 day−1 of secondary wastewater effluent was found to be 0.85 € m−3.  相似文献   

14.
This study assessed the efficacy for removing Cryptosporidium parvum oocysts of poorly sorted, Fe- and Al-rich, subsurface sediments collected from 0.9 to 4.9 and 1.7-13.9 m below land surface at an operating riverbank filtration (RBF) site (Russian River, Sonoma County, CA). Both formaldehyde-killed oocysts and oocyst-sized (3 μm) microspheres were employed in sediment-packed flow-through and static columns. The degree of surface coverage of metal oxides on sediment grain surfaces correlated strongly with the degrees of oocyst and microsphere removals. In contrast, average grain size (D50) was not a good indicator of either microsphere or oocyst removal, suggesting that the primary mechanism of immobilization within these sediments is sorptive filtration rather than physical straining. A low specific UV absorbance (SUVA) for organic matter isolated from the Russian River, suggested that the modest concentration of the SUVA component (0.8 mg L−1) of the 2.2 mg L−1 dissolved organic carbon (DOC) is relatively unreactive. Nevertheless, an amendment of 2.2 mg L−1 of isolated river DOC to column sediments resulted in up to a 35.7% decrease in sorption of oocysts and (or) oocyst-sized microspheres. Amendments (3.2 μM) of the anionic surfactant, sodium dodecyl benzene sulfonate (SDBS) also caused substantive decreases (up to 31.9 times) in colloid filtration. Although the grain-surface metal oxides were found to have a high colloid-removal capacity, our study suggested that any major changes within the watershed that would result in long-term alterations in either the quantity and (or) the character of the river's DOC could alter the effectiveness of pathogen removal during RBF operations.  相似文献   

15.
A combined strategy of a photo-Fenton pretreatment followed by a Sequencing Batch Biofilm Reactor (SBBR) was evaluated for total C and N removal from a synthetic wastewater containing exclusively 200 mg L−1 of the antibiotic Sulfamethoxazole (SMX). Photo-Fenton reaction was optimized at the minimum reagent doses in order to improve the biocompatibility of effluents with the subsequent biological reactor. Consequently, the pretreatment was performed with two different initial H2O2 concentrations (300 and 400 mg L−1) and 10 mg L−1 of Fe2+. The pre-treated effluents with the antibiotic intermediates as sole carbon source were used as feed for the biological reactor. The SBBR was operated under aerobic conditions to mineralize the organic carbon, and the Hydraulic Retention Time (HRT) was optimized down to 8 h reaching a removal of 75.7% of the initial Total Organic Carbon (TOC). The total denitrification of the NO3 generated along the chemical-biological treatment was achieved by means of the inclusion of a 24-h anoxic stage in the SBBR strategy. In addition, the Activated Sludge Model No. 1 (ASM1) was successfully used to complete the N balance determining the N fate in the SBBR.The characterization and the good performance of the SBBR allow presenting the assessed combination as an efficient way for the treatment of wastewaters contaminated with biorecalcitrant pharmaceuticals as the SMX.  相似文献   

16.
Innovative disinfection technologies are being studied for seawater, seeking a viable alternative to chlorination. This study proposes the use of H2O2/UV254 and photo-Fenton as disinfection treatment in seawater. The irradiations were carried out using a sunlight simulator (Suntest) and a cylindrical UV reactor. The efficiency of the treatment was compared for Milli-Q water, Leman Lake water and artificial seawater. The presence of bicarbonates and organic matter was investigated in order to evaluate possible effects on the photo-Fenton disinfection treatment. The photo-Fenton treatment, employing 1 mg L−1 Fe2+ and 10 mg L−1 of H2O2, led to the fastest bacterial inactivation kinetics. Using H2O2/UV254 high disinfection rates were obtained similar to those obtained with photo-Fenton under UV254 light. In Milli-Q water, the rate of inactivation for Escherichia coli was higher than in Leman Lake water and seawater due to the lack of inorganic ions affecting negatively bacteria inactivation. The presence of bicarbonate showed scavenging of the OH radicals generated in the treatment of photo-Fenton and H2O2/UV254. Despite the negative effect of inorganic ions, especially HCO3-, the disinfection treatments with AOPs in lake water and seawater improved significantly the disinfection compared to light alone (simulated sunlight and UV254). In the treatment of photo-Fenton with simulated sunlight, dissolved organic matter had a beneficial effect by increasing the rate of inactivation. This is associated with the formation of Fe3+-organo photosensitive complexes leading to the formation of ROS able to inactivate bacteria. This effect was not observed in the photo-Fenton with UV254. Growth of E. coli surviving in seawater was observed 24 and 48 h after treatment with UV light. However, growth of surviving bacteria was not detected after photo-Fenton with UV254 and H2O2/UV254 treatments.  相似文献   

17.
The coupling of membrane separation and photocatalytic oxidation has been studied for the removal of pharmaceutical pollutants. The retention properties of two different membranes (nanofiltration and reverse osmosis) were assessed. Comparable selectivity on the separation of pharmaceuticals were observed for both membranes, obtaining a permeate stream with concentrations of each pharmaceutical below 0.5 mg L1 and a rejected flux highly concentrated (in the range of 16–25 mg L1 and 18–32 mg L1 of each pharmaceutical for NF-90 and BW-30 membranes, respectively), when an initial stream of six pharmaceuticals was feeding to the membrane system (10 mg L1 of each pharmaceutical). The abatement of concentrated pharmaceuticals of the rejected stream was evaluated by means of heterogeneous photocatalytic oxidation using TiO2 and Fe2O3/SBA-15 in presence of hydrogen peroxide as photo-Fenton system. Both photocatalytic treatments showed remarkable removals of pharmaceutical compounds, achieving values between 80 and 100%. The nicotine was the most refractory pollutant of all the studied pharmaceuticals. Photo-Fenton treatment seems to be more effective than TiO2 photocatalysis, as high mineralization degree and increased nicotine removal were attested. This work can be considered an interesting approach of coupling membrane separation and heterogeneous photocatalytic technologies for the successful abatement of pharmaceutical compounds in effluents of wastewater treatment plants.  相似文献   

18.
The present study provides results describing the degradation performance of the Sulfamethazine (SMT) antibiotic via photo-Fenton treatment. Experiments were carried out using 1 L solution samples of SMT (50 mg L−1) under different conditions. HPLC results reveal that both Fenton and photo-Fenton reactions were able to completely remove SMT antibiotic from the studied samples in less than 2 min treatment. Half-life times and kinetic parameters (assuming a pseudo-first-order kinetics at reaction initial stage, far from the equilibrium) for SMT degradation were determined and discussed. Hence, appropriate Fenton reagent loads are given to attain different targets proposed. TOC and HPLC data also revealed the presence of reaction intermediates; thus toxicity assays were performed regarding bacterial growth rate. The toxicity of an SMT solution was shown to increase during its degradation by means of photo-Fenton reactions.  相似文献   

19.
This study investigates the oxidation of pharmaceuticals, endocrine disrupting compounds and pesticides during ozonation applied in drinking water treatment. In the first step, second-order rate constants for the reactions of selected compounds with molecular ozone (kO3) were determined in bench-scale experiments at pH 8.10: caffeine (650 ± 22 M−1 s−1), progesterone (601 ± 9 M−1 s−1), medroxyprogesterone (558 ± 9 M−1 s−1), norethindrone (2215 ± 76 M−1 s−1) and levonorgestrel (1427 ± 62 M−1 s−1). Compared to phenolic estrogens (estrone, 17β-estradiol, estriol and 17α-ethinylestradiol), the selected progestogen endocrine disruptors reacted far slower with ozone. In the second part of the study, bench-scale experiments were conducted with surface waters spiked with 16 target compounds to assess their oxidative removal using ozone and determine if bench-scale results would accurately predict full-scale removal data. Overall, the data provided evidence that ozone is effective for removing trace organic contaminants from water with ozone doses typically applied in drinking water treatment. Ozonation removed over 80% of caffeine, pharmaceuticals and endocrine disruptors within the CT value of about 2 mg min L−1. As expected, pesticides were found to be the most recalcitrant compounds to oxidize. Caffeine can be used as an indicator compound to gauge the efficacy of ozone treatment.  相似文献   

20.
Watts MJ  Linden KG 《Water research》2008,42(20):4949-4954
Biodegradable organic carbon (BDOC) from OH radical oxidation (UV-H2O2) of the recalcitrant industrial anti-foaming agents and flame retardants, tri-n-butyl phosphate (TBP) and tris(2-chloroethyl) phosphate (TCEP), was quantified with respect to the fraction of the TBP or TCEP photooxidized. For 50-96% contaminant oxidation via OH, BDOC was similar in solutions of either compound, and ranged from 0.25 to 0.5 mg L−1 (TBP0 and TCEP0 = 5 mg L−1). In addition, for this contaminant oxidation range, complete dehalogenation of TCEP was observed, along with a significant change in pH. Oxidation of TCEP results in both H+ and Cl release, while the TBP mineralization pathway results in CO2, H2O, H+, and PO43−. For low μg/L levels of TCEP contamination in treated surface waters, UV-H2O2 oxidation of TCEP or TBP would not be expected to impact pH or chloride concentrations, however, a portion of the TCEP or TBP oxidation products, likely in non-halogenated aldehyde form, would become an available carbon source for bacterial growth in storage, distribution, or during further physical treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号