共查询到18条相似文献,搜索用时 62 毫秒
1.
采用自蔓延高温合成(SHS)技术制备出了一种用于铝及铝合金晶粒细化的Al-Ti-C中间合金,并研究了压坯密度、压坯直径、预热温度对自蔓延高温合成Al-Ti-C中间合金时的燃烧温度及微观组织结构的影响。结果表明:采用SHS法合成的Al-Ti-C中间合金由Al,Al3Ti,TiC3相组成:本研究中压坯压力、预热温度对反应合成Al-Ti-C中间合金时的燃烧温度及产物的微观组织结构有较大的影响,而压坯直径变化对微观组织的影响不是很大。 相似文献
2.
采用激光引燃自蔓延高温合成技术制备Al-Ti-C中间合金,研究了改变激光辐照参数对合成Al-Ti-C中间合金显微组织结构的影响,并用所制备的中间合金对工业纯铝进行细化试验。结果表明:激光辐照时间为1.0s、功率控制在1000W时,制备的Al-Ti-C中间合金生成TiAl3和TiC粒子弥散分布、TiAl3直径在1.5μm左右,TiC粒子直径为1μm。向工业纯铝中加入0.1%的Al-Ti-C中间合金具有最佳的细化效果,细化后晶粒的尺寸为120μm。 相似文献
3.
采用自蔓延高温合成技术实现了TiAl合金的连接。在连接过程中采用了具有很高放热量的Ti-Al-C中间层以及外加电磁场辅助连接。连接接头包括3个典型的反应区域,靠近TiAl母材界面处发现了深灰色的TiAl,反应层,在中间层内观察到了TiC颗粒以及Ti-Al系化合物。直接连接时由于产物和反应物之间的比热差,杂质的气化和孔隙中束缚气体的释放而导致孔隙无法避免。为了提高致密度,在粉末压坯和TiAl母材之间添加了Ag-Cu钎料箔。在SHS反应过程中熔化的钎料改善了中间层对TiAl母材的润湿同时填充到了中间层反应产物的孔隙中,采用这种方法能够提高反应产物的致密度和连接质量。 相似文献
4.
自蔓延高温合成钴基Stellite 6合金和铸造HS111合金微观组织 总被引:1,自引:0,他引:1
运用SEM、XRD和EPMA等分析方法对自蔓延高温合成钴基Stellite 6合金与连续铸造态钴基合金HS111的微观组织进行比较研究.结果表明,运用自蔓延高温合成方法制备的钴基Stellite 6合金与连续铸造态的钴基合金HS111的微观组织结构相似,但连铸HS111中的碳化物种类比较单一且均匀. 相似文献
5.
通过压块在不同温度下的烧结反应,借助DTA、XRD分析手段,研究了Al-Ti-C体系中Al对合成TiC的影响。结果表明,烧结后的压块显示出典型的自蔓延高温合成特点。无Al的条件下,Ti很难与C直接反应生成TiC,液态铝可作为很好的扩散介质,并且Al是通过生成Al3Ti而参加自蔓延高温反应。当Ti/C原子比为1,烧结温度为1000℃,压块中的Al量在10wt%左右时,Al-Ti-C体系能较为完全地生成TiC。 相似文献
6.
7.
8.
自蔓延高温合成钴-钛系多孔合金 总被引:1,自引:0,他引:1
采用自蔓延高温合成制备了Co-Ti多孔体新型人体骨、关节材料。以Ti粉和Co粉按原子比Ti∶Co=1∶1与Ti∶Co=2∶12种配比的原料,在10Pa负压条件下,500℃预热2min点燃进行自蔓延合成反应。对反应产物进行XRD分析和SEM观察及力学性能测试。结果表明,2种合成产物分别为单相CoTi和CoTi2。CoTi的结构和力学性能比CoTi2优越。其孔隙率为40.9%,抗压强度308MPa,抗折强度134MPa,弹性模量11.6GPa,与人体骨、关节具有很好的力学性能相容性。因此用SHS法制备的CoTi多孔合金有望作为一种新型人体植入材料获得开发应用。 相似文献
9.
10.
11.
通过对石膏型铸造ZL205A合金添加不同含量的Al-Ti-C中间合金,研究了Al-Ti-C中间合金对ZL205A合金组织和性能的影响。结果表明,当Al-Ti-C中间合金添加量为0.7%时,ZL205A晶粒的细化效果最好,晶粒尺寸达到82μm。经过T5处理,添加0.7%的Al-Ti-C中间合金的ZL205A合金的抗拉强度为456MPa,伸长率达到8.2%,比未处理的ZL205A合金性能有了显著提升。 相似文献
12.
AlTiC中间合金对Al-Si合金的细化 总被引:1,自引:0,他引:1
在试验室制出AlTi5C0 .3中间合金细化剂 ,该中间合金对纯铝有较好的细化作用。对Al Si合金进行细化时试验发现 ,较低的加入量对合金基本不起作用 ,当w(Ti)达 0 .15 %左右时 ,才能达到最佳细化效果 ,并且发生较早的细化衰退。Mg元素对其细化能力有促进作用 相似文献
13.
反应放热法合成Al-Ti-C晶粒细化剂研究 总被引:4,自引:0,他引:4
以Al,Ti,C粉末为原料,在Al熔体中通过粉末间的强烈放热反应合成了AlTi5C0.2晶粒细化剂,并采用OM,XRD和SEM等分析手段。研究了中间合金的反应合成过程、TiC粒子的形成机制及其细化特性。结果表明:在670℃时,Ti(s)与Al(1)发生强烈的放热反应,在Al熔体中形成块状TiAl3粒子;反应释放的热量使反应区升温,TiAl3(s)粒子溶解于Al熔体中形成活性Ti,Ti通过扩散至C颗粒表面并与之反应形成TiC粒子,并呈现聚集形态;随保温时间的延长,TiAl3粒子由块状向针片状转变,TiC粒子的簇状分布特征明显增强,中间合金的细化能力略有降低。 相似文献
14.
通过SEM分析手段,研究了液固反应法制备的Al—Ti—C晶粒细化剂的组织特征,并通过不同Ti/C的Al—Ti—C晶粒细化剂的细化效果比较,确定Al—Ti—C合金的最佳成分范围;分析了Al熔体凝固过程的形核过冷度、以及α-Al形核与长大驱动力,探讨了凝固过程中α-Al细化机制。结果表明:细化效果决定于TiC的数量、形核活性及晶粒生长限制因子的综合作用。 相似文献
15.
重熔工艺对Al-Ti-C晶粒细化剂组织的影响 总被引:1,自引:0,他引:1
采用Lasertec1LMH21共焦扫描激光显微镜和光学显微镜,观察了Al-Ti-C晶粒细化剂在加热熔化过程中的组织变化与凝固后的组织。结果发现,在加热过程中,Al-Ti-C细化剂中Al基体首先熔化,随后片状Ti Al3和TiC相成为游离相,然后被熔断、破碎成细小的新质点,其破碎程度随着保温时间的延长与熔化温度的升高而加剧。重熔工艺可有效改善Ti Al3和TiC晶粒的形貌,低温对Ti Al3相的形貌影响较大,高温对TiC相的形貌影响较大。 相似文献
16.
17.
研究Al-Ti-C中间合金对Al-Mg-Si系铝合金的组织及性能的影响,并从理论上分析了Al-Ti-C的作用机理.结果表明,Al-Ti-C中间合金对Al-Mg-Si系合金铸态组织具有强烈的细化作用,同时对其导电性能、耐腐蚀性能及抗拉强度也有一定改善. 相似文献
18.
采用K2TiF6、石墨粉和纯铝为主要原料的原位反应方法制备了Al-Ti-C晶粒细化剂.通过光学显微镜、扫描电镜和能谱分析等方法分析了Al-Ti-C中间合金的显微组织.试验结果表明,K2TiF6和石墨粉同温下加入时,Al3Ti呈块状分布,不同温度下加入时则呈针状或长条状分布.随着K2TiF6和石墨粉加入温度的不同,Al-Ti-C中间合金中TiC粒子的生成机制也不同. 相似文献