首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinel (MgAl2O4) and yttria stabilized ZrO2 (YSZ) are candidates for fuel materials for use in nuclear reactors and the optical and insulating materials for fusion reactors. In our previous studies, the amorphization of spinel under 60 keV Xe ion irradiation at RT was observed. On the other hand, amorphization could not be confirmed in YSZ single crystals under the same irradiation conditions. In the present study, the damage evolution process of polycrystalline spinel–YSZ composite materials has been studied by in situ TEM observation during ion irradiation. The irradiation was performed with 30 keV Ne+ ions at a flux of 5 × 1013 ions cm−2 s−1 at 923 K and 1473 K, respectively. The observed results revealed a clear difference in morphology of damage depending on irradiation temperature and crystal grains. In the irradiation at 923 K, defect clusters and bubbles were formed homogeneously in YSZ grains. On the other hand, at 1473 K, only bubble formation was observed. The bubbles grew remarkably with increasing ion fluence in both grains. Even though the growth of the bubbles was observed in both grains, the average diameter of grown bubbles in spinel grains was larger than those in YSZ ones. The bubbles tended to form along the grain boundary at both temperatures.  相似文献   

2.
Nucleation and growth process of defect clusters in cerium dioxide (CeO2) with fluorite-type crystal structure has been investigated in situ under electron irradiation by using high voltage transmission electron microscopy. Planar defect clusters were formed with electron irradiation ranging from 200 to 1000 keV at temperatures below 450 K. The defect clusters were determined to be faulted-interstitial type dislocation loops lying on {1 1 1} planes. The growth rate of dislocation loops was found to increase with decreasing electron energy. An analysis of the fluence dependence of the growth process of dislocation loops suggests an increase in the vacancy mobility with decreasing electron energy. The rate of the electronic excitation is discussed in terms of the radiation-induced diffusion of oxygen-ion vacancies.  相似文献   

3.
In examining the microstructure of TEM specimens prepared from D+-implanted Cu for the presence of bubbles it was found that cuprous oxide (Cu2O) layers had formed over large areas of the specimen surfaces. The Cu was irradiated at normal incidence with 200 keV D+ ions at a temperature of 120 K to a dose of ˜2 × 1021 D+/m2. Ar+ ion milling at 330 K was used to erode irradiated surfaces to various depths prior to chemical back-thinning in a jet electropolishing bath. There was no evidence for the formation in the Cu of bubbles of either deuterium or argon, but dislocations at high density and planar defects were evident. Lattice fringes from {110}, {111} and {200} planes in Cu2O and moiré patterns formed by double diffraction in the Cu and overlaid Cu2O film were obvious features in bright-field micrographs. The moiré patterns include examples of magnified images of lattice defects.  相似文献   

4.
We have performed high-dose Fe ion implantation into Si and characterized ion-beam-induced microstructures as well as annealing-induced ones using transmission electron microscopy (TEM) and grazing-incidence X-ray diffraction (GIXRD). Single crystals of Si(1 0 0) substrate were irradiated at 623 K with 120 keV Fe+ ions to a fluence of 4 × 1017 cm−2. The irradiated samples were then annealed in a vacuum furnace at temperatures ranging from 773 K to 1073 K. Cross-sectional TEM observations and GIXRD measurements revealed that a layered structure is formed in the as-implanted specimen with ε-FeSi, β-FeSi2 and damaged Si, as component layers. A continuous β-FeSi2 layer was formed on the topmost layer of the Si substrate after thermal annealing.  相似文献   

5.
In order to clarify the effect of He atoms on the formation and annealing behavior of defect clusters in Ti–Al alloys, a Ti–47 at.% Al intermetallic compound has been irradiated with electrons and He-ions. Helium-ion irradiation enhances the nucleation of defect clusters, especially of interstitial loops, at temperatures from 623 to 773 K in both γ-TiAl and 2-Ti3Al grains of the sample. However, there is little difference between the annealing temperature ranges of defect clusters in TiAl grains formed by He-ion or electron irradiation at 623 K. The dot-shaped clusters and interstitial loops grow scarcely during annealing, but are annihilated by annealing up to 923 K. Cavities are formed after irradiation with He-ions below 10 dpa at 773 K, but no cavities are formed by electron irradiation up to 30 dpa. The cavities in γ-TiAl and 2-Ti3Al grains survive after annealing even at 1053 K for 1.8 ks, keeping their density and diameter to be nearly the same as those in the as-irradiated grains.  相似文献   

6.
We have analysed by computer simulation the evolution of defects caused by self-irradiation of crystalline silicon (c-Si) at high temperatures. A classical molecular dynamics simulation (MD) was followed by defect analysis using the pixel mapping (PM) method. The incident Si ion energy was 5 keV and the target temperature was set to 1000 K. In the present simulation, we aimed to reproduce experimentally observed {3 1 1} planer defects. So far we did not observe long chain structures towards the 1 1 0 direction, nor remarkable platelet {3 1 1} planar defects. Nevertheless we observed a significant increase of 1 1 0-oriented self-interstitial dimers and a small fraction of linear trimers, which will be the initial stages of 1 1 0-rod formation.  相似文献   

7.
8.
Macroscopic length (linear swelling) and thermal diffusivity changes were measured for heavily neutron-irradiated -Al2O3, AlN, β-Si3N4 and β-SiC that were irradiated under the same capsule to compare the difference between these materials. And in addition, several capsules were irradiated under different temperatures (646–1039 K) and to different neutron doses (0.4–8.0 × 1026 n/m2) in the Japanese experimental fast reactor JOYO. The swelling and the thermal diffusivity of as-irradiated specimens showed some dependence on the neutron-irradiation dose and the irradiation temperature, and that indicates stability under neutron-irradiation environments. Alpha-Al2O3 and AlN showed relatively large swelling and degradation of thermal diffusivity than β-Si3N4 and β-SiC. This difference is related to the crystal structure of each material. The dependence of swelling on irradiation dose, that is, -Al2O3 showed linear inclination but β-Si3N4 and β-SiC showed saturation, supports the model of defect structures. In addition, annealing behaviors of swelling and thermal diffusivity were compared to analyze the behavior of defects at higher temperature.  相似文献   

9.
Transient enhanced diffusion (TED) and electrical activation after nonamorphizing Si implantations into lightly B-doped Si multilayers shows two distinct timescales, each related to a different class of interstitial defect. At 700°C, ultrafast TED occurs within the first 15 s with a B diffusivity enhancement of > 2 × 105. Immobile clustered B is present at low concentration levels after the ultrafast transient and persists for an extended period ( 102–103 s). The later phase of TED exhibits a near-constant diffusivity enhancement of ≈ 1 × 104, consistent with interstitial injection controlled by dissolving {113} interstitial clusters. The relative contributions of the ultrafast and regular TED regimes to the final diffusive broadening of the B profile depends on the proportion of interstitials that escape capture by {113} clusters growing within the implant damage region upon annealing. Our results explain the ultrafast TED recently observed after medium-dose B implantation. In that case there are enough B atoms to trap a large proportion of interstitials in Si---B clusters, and the remaining interstitials contribute to TED without passing through an intermediate {113} defect stage. The data on the ultrafast TED pulse allows us to extract lower limits for the diffusivities of the Si interstitial (DI > 2 × 10−10 cm2s−1) and the B interstitial(cy) defect (DBi > 2 × 10−13 cm2s−1) at 700°C.  相似文献   

10.
Silicon carbide (SiC) precipitates buried in Si(1 0 0) substrates were synthesized by ion implantation of 50 keV and 150 keV C+ ions at different fluences. Two sets of samples were subsequently annealed at 850 °C and 1000 °C for 30 min. Fourier transform infrared (FTIR) spectroscopy studies and X-ray diffraction (XRD) analysis confirmed formation of β-SiC precipitates in the samples. Ion irradiation with 100 MeV Ag7+ ions at room temperature does not induce significant change in the precipitates. It could be interpreted from the FTIR observations that ion irradiation may induce nucleation in Si + C solution created by ion implantation of C in Si. Modifications induced by swift heavy ion irradiation are found to be dependent on implantation energy of C+ ions.  相似文献   

11.
Insufficient radiation resistance of construction materials is the Achilles heel for thermonuclear energetics. In wide-gap dielectrics, Frenkel defects are created not only because of the knock-out (impact) mechanism but also because of the decay of the electronic excitations formed during the irradiation (i.e. due to nonimpact mechanisms). The processes of the defect creation at the irradiation of highly pure LiF single crystals at 6–8 K by 1–30-keV electrons, X-rays, or synchrotron radiation of 12–70 eV have been investigated. The annealing processes of these defects in a temperature range up to 200 K have been studied as well. In LiF, creation has been revealed for the following: (1) F–H pairs caused by the decay of anion excitons or by the recombination of electrons and holes, (2) F′–H–VK and F–I–VK defect groups at the decay of cation excitons (62 eV), or (3) 20-keV electron irradiation. The mechanism of defect creation at the recombination of hot holes and hot electrons has been discussed for -SiO2 crystals with an energy gap between the subbands of a valence band. One of the possible ways to suppress this mechanism (“luminescent defence”) is doping a material by luminescent impurities able to capture a part of the energy of hot carriers before their relaxation and recombination (e.g. in MgO:Cr).  相似文献   

12.
Electronically conducting polymers are suitable electrode materials for high performance supercapacitors, for their high specific capacitance and high dc conductivity in the charged state. Supercapacitors and batteries are energy storage and conversion systems which satisfies the requirements of high specific power and energy in a complementary way. Ion beam {energy > 1 MeV} irradiation on the polymer is a novel technique to enhance or alter the properties like conductivity, density, chain length and solubility.

Conducting polymer polypyrrole thin films doped with LiClO4 are synthesized electrochemically on ITO coated glass substrate and are irradiated with 160 MeV Ni12+ ions at different fluence 5 × 1010, 5 × 1011 and 3 × 1012 ions cm−2. Dc conductivity measurement of the irradiated films showed 50–60% increase in conductivity which is may be due to increase of carrier concentration in the polymer film as observed in UV–Vis spectroscopy and other effects like cross-linking of polymer chain, bond breaking and creation of defects sites. X-ray diffractogram study shows that the degree of crystallinity of polypyrrole increases in SHI irradiation and is proportionate to ion fluence. The capacitance of the irradiated films is lowered but the capacitance of the supercapacitors with irradiated films showed enhanced stability compared to the devices with unirradiated films while characterized for cycle life up to 10,000 cycles.  相似文献   


13.
We have investigated the formation and growth process of dislocation loops in Zircaloys (Zrys) under electron irradiation using a high voltage electron microscope (HVEM). Dislocation loops are of great importance to degradation phenomena in fuel claddings, such as irradiation growth and reduced ductility in light water reactors. TEM specimens of three kinds of Zircaloys (Zry-2, Zry-4 and improved Zry-2) were irradiated with 1MeV electrons at temperatures from 320 K to 970K in the HVEM. Interstitial-type dislocation loops with the Burgers vector b = 1/3(1120) were formed on the pyramidal or the prismatic planes at the beginning of irradiation. It was found that the nucleation and growth process of those loops follows the kinetics based on the &-interstitial model where di-interstitials act as the nuclei of interstitial dislocation loops. Based on this model, migration energies of interstitials and vacancies were determined to be 0.15–0.22eV and 1.0–1.2eV, respectively, from the irradiation temperature dependence of the density and the growth rate of loops.  相似文献   

14.
Single crystals of z- and x-cut LiNbO3 were irradiated at room temperature and 15 K using He+- and Ar+-ions with energies of 40 and 350 keV and ion fluences between 5 × 1012 and 5 × 1016 cm−2. The damage formation investigated with Rutherford backscattering spectrometry (RBS) channeling analysis depends on the irradiation temperature as well as the ion species. For instance, He+-irradiation of z-cut material at 300 K provokes complete amorphization at 2.0 dpa (displacements per target atom). In contrast, 0.4 dpa is sufficient to amorphize the LiNbO3 in the case of Ar+-irradiation. Irradiation at 15 K reduces the number of displacements per atom necessary for amorphization. To study the etching behavior, 400 nm thick amorphous layers were generated via multiple irradiation with He+- and Ar+-ions of different energies and fluences. Etching was performed in a 3.6% hydrofluoric (HF) solution at 40 °C. Although the etching rate of the perfect crystal is negligible, that of the amorphized regions amounts to 80 nm min−1. The influence of the ion species, the fluence, the irradiation temperature and subsequent thermal treatment on damage and etching of LiNbO3 are discussed.  相似文献   

15.
The compressive behaviour of carbon materials has been investigated by modelling the recently developed method of nanoindentation. Molecular dynamics simulations are employed to investigate the indentation of a diamond cube-corner apex into graphite {0 0 0 1}, diamond {0 0 1} and a C60 substrate. Simulations performed on graphite show that the crystal undergoes an elastic deformation. Indentation of diamond shows some elastic behaviour but also tip damage. Indentation on a C60 film reflects a weakly bonded material with the emission of surface C60 molecules and a plastic deformation of the material. Penetration of the substrate surfaces shows compression of the tip apex and in the case of the diamond substrate, extraction causes blunting by the transfer of atoms from the tip to the substrate. Some qualitative comparisons are made to experiment but available computer power constrains feasible indentation depths to an order of magnitude smaller than experiment and over indentation times several orders of magnitude smaller.  相似文献   

16.
The enthalpy of γ-LiAlO2 was measured between 403 and 1673 K by isothermal drop calorimetry. The smoothed enthalpy curve between 298 and 1700 K results in H0(T) − H0(298 K)=−37 396 + 93.143 · T + 0.00557 · T2 + 2 725 221 · T−1 J/mol. The standard deviation is 2.2%. The heat capacity was derived by differentiation of the enthalpy curve. The value extrapolated to 298 K is Cp,298=(65.8 ± 2.0) J/K mol.  相似文献   

17.
We have synthesized amorphous Fe–Si thin layers and investigated their microstructure using transmission electron microscopy (TEM). Si single crystals with (1 1 1) orientation were irradiated with 120 keV Fe+ ions to a fluence of 4.0 × 1017 cm−2 at cryogenic temperature (120 K), followed by thermal annealing at 1073 K for 2 h. A continuous amorphous layer with a bilayered structure was formed on the topmost layer of the Si substrate in the as-implanted specimen: the upper layer was an amorphous Fe–Si, while the lower one was an amorphous Si. After annealing, the amorphous bilayer crystallized into a continuous β-FeSi2 thin layer.  相似文献   

18.
We have tried to determine the effects of 60Co gamma irradiation on properties of Au/SnO2/n-Si (MOS) structures such as dielectric constant (ε′), dielectric loss (ε″), tangent loss (tan δ) and ac conductivity (σac). Three samples were fabricated with different deposition time. The samples were irradiated using a 60Co γ-ray source irradiation with the total dose range of 0–500 kGy at room temperature. Capacitance and conductance (CGV) measurements were performed at a frequency of 500 kHz in the dark and at room temperature before and after irradiation. The experimental data were analyzed using complex permittivity and electric modulus. The values of ε′, ε″, tan δ and σac showed a strong dependence on the applied voltage and irradiation dose. The dielectric properties of MOS structures have been found to be strongly influenced by the presence of dominant radiation-induced defects. Experimental results show that the interfacial polarization contributes to the improvement of dielectric properties of Au/SnO2/n-Si (MOS) Schottky diodes.  相似文献   

19.
利用中国科学院近代物理研究所320 kV高压平台提供的氦离子辐照烧结碳化硅,辐照温度从室温到1 000 ℃,辐照注量为1015~1017 cm-2。辐照完成后,进行退火处理,然后开展透射电子显微镜、拉曼光谱、纳米硬度和热导率测试。研究发现,烧结碳化硅中氦泡形核阈值注量低于单晶碳化硅。同时,氦泡形貌和尺寸与辐照温度、退火温度有关。另外,对辐照产生的晶格缺陷、元素偏析进行了研究。结果表明,辐照产生了大量的缺陷团簇,同时氦泡生长也会发射间隙子,在氦泡周围形成间隙型位错环。在晶界处,容易发生碳原子聚集。辐照导致材料先发生硬化而后发生软化,且热导率降低。  相似文献   

20.
The aging of zirconium tritides: A transmission electron microscopy study   总被引:3,自引:0,他引:3  
Young Zr tritides were investigated for aging times up to about 6 months' using analytical transmission electron microscopy. No isotopic differences between hydrides and tritides were seen as far as precipitation morphology and structures are concerned. Also, no low-temperature phase transitions were observed in the tritides γ and δ. 3He generated by tritium decay was found to precipitate in very small bubbles (1–2 nm in diameter and densities of about 5×1023 m−3) which were first clearly visible after approximately 24 days of aging. In addition to the 3He bubbles, interstitial loop damage was observed. Acoustic emission techniques applied to 5 and 6 months old Zr-T samples did not reveal any above background acoustic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号