首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
An open question of interest to the mechanics of interface fracture is how to generalize the Comninou contact model for interface cracks in isotropic solids to the general anisotropic case. Part of the difficulty lies in that the peculiar oscillatory behavior can not be fully eliminated by Comninou's original assumption of pure pressure contact between the crack surfaces. In this paper, we propose a model that strictly enforces the non-oscillatory condition by allowing the crack face contact force to have a shear component normal to the direction of slip, which is somewhat reminiscent of frictionless slip between a pair of grooved surfaces. Based on that model, complex variable representations are adopted to determine the complete series expansion for the crack-tip field. The solutions are incorporated into a hybrid finite element procedure to develop a special element for closed interfacial crack tips obeying the generalized contact model. Numerical examples involving a partially closed crack between a pair of misoriented cubic crystals are given to illustrate how the special crack-tip element helps in determining the stress intensity factors as well as the contact zone geometry.  相似文献   

2.
Partition of unity enrichment for bimaterial interface cracks   总被引:1,自引:0,他引:1  
Partition of unity enrichment techniques are developed for bimaterial interface cracks. A discontinuous function and the two‐dimensional near‐tip asymptotic displacement functions are added to the finite element approximation using the framework of partition of unity. This enables the domain to be modelled by finite elements without explicitly meshing the crack surfaces. The crack‐tip enrichment functions are chosen as those that span the asymptotic displacement fields for an interfacial crack. The concept of partition of unity facilitates the incorporation of the oscillatory nature of the singularity within a conforming finite element approximation. The mixed‐mode (complex) stress intensity factors for bimaterial interfacial cracks are numerically evaluated using the domain form of the interaction integral. Good agreement between the numerical results and the reference solutions for benchmark interfacial crack problems is realized. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Complete stress and electric fields near the tip of a conducting crack between two dissimilar anisotropic piezoelectric media, are obtained in terms of two generalized bimaterial matrices proposed in this paper. It is shown that the general interfacial crack-tip field consists of two pairs of oscillatory singularities. New definitions of real-valued stress and electric field intensity factors are proposed. Exact solutions of the stress and electric fields for basic interface crack problems are obtained. An alternate form of the J integral is derived, and the mutual integral associated with the J integral is proposed. Closed form solutions of the stress and electric field intensity factors due to electromechanical loading and the singularities for a semi-infinite crack as well as for a finite crack at the interface between two dissimilar piezoelectric media, are also obtained by using the mutual integral.  相似文献   

4.
The problem of a plane strain crack lying along an interface between a rigid substrate and an elastic-plastic material has been studied. The elastic-plastic material exhibits pressure-sensitive yielding and plastic volumetric deformation. Two-term expansions of the asymptotic solutions for both closed frictionless and open crack-tip models have been obtained. The Mises effective stress in the interfacial crack-tip fields is a decreasing function of the pressure-sensitivity in both open and closed-crack tip models. The variable-separable solution exists for most pressure-sensitive materials and the limit values for existence of the variable-separable solution vary with the strain-hardening exponents. The governing equations become singular as the pressure-sensitivity limit is approached. Strength of the leading stress singularity is equal 1/(n+1) for both crack-tip models, regardless of the pressure-sensitivity. The second-order fields have been solved as an additional eigenvalue problem and the elasticity terms do not enter the second-order solutions as n2. The second exponents for the closed crack model are negative for the weak strain hardening, whereas the negative second-order eigenvalue in the open crack model slightly grows with the pressure-sensitivity. The second-order solutions are of significance in characterising the crack-tip fields. The leading-order solution contains the dominant mode I components for both open and closed crack-tip models when the materials do not have substantial strain hardening. The second-order solutions are generally mode-mixed and depend significantly on the pressure-sensitivity.  相似文献   

5.
It is shown that a singularity occurs in isoparametric finite elements if the mid-side nodes are moved sufficiently from their normal position. By choosing the mid-side node positions on standard isoparametric elements so that the singularity occurs exactly at the corner of an element it is possible to obtain quite accurate solutions to the problem of determining the stress intensity at the tip of a crack. The solutions compare favourably with those obtained using some types of special crack tip elements, but are not as accurate as those given by a crack tip element based on the hybrid principle. However, the hybrid elements are more difficult to use.  相似文献   

6.
A hybrid stress finite element procedure for the solution of bending stress intensity factors of a plate with a through-the-thickness crack is presented. Reissner's sixth-order plate theory including the effects of transverse shear deformation is used. The dominant singular crack tip stress field is embedded in the crack tip singular elements and only regular polynomial functions are assumed in the far field elements. The stress intensity factors can be calculated directly from the crack tip singular stress solution functions. The effects of the plate thickness, the ratio between the crack size and the inplane dimension of the plate, and the singular element size on the stress intensity factor solution are investigated. The effects of the explicit enforcement of traction-free conditions along crack surfaces, which are the natural boundary conditions in the present hybrid stress finite element model, are also investigated. The numerical results of bending of a plate with a straight central crack compare favourably with analytical solutions. It is also found that the explicit enforcement of traction-free conditions along crack surfaces is mandatory to obtain meaningful results for the Mode I type of bending stress intensity factor.  相似文献   

7.
The finite element method with quarter-point crack-tip elements is used and a simple formula for obtaining the coefficients of the second-order terms in the series expansion for near crack tip stresses in orthotropic materials under biaxial loading is presented. This formula is obtained by comparing the variation of the displacements along the crack tip element with the elastic field solution for the crack tip. Numerical examples are given for the validity of the present formulation. The results obtained are compared with the theoretical ones and a good agreement between the two solutions is obtained.  相似文献   

8.
Typical bimaterial interfaces are non-planar due to surface facets or roughness. Crack-tip stress fields of an interface crack must be influenced by non-planarity of the interface. Consequently, interface toughness is affected. In this paper, the crack-tip fields of a finite crack on an elastic/rigid interface with periodic undulation are studied. Particular emphasis is given to the fracture mechanics parameters, such as the stress intensity factors, crack-tip energy release rate, and crack-tip mode mixity. When the amplitude of interface undulation is very small relative to the crack length (which is the case for rough interfaces), asymptotic analysis is used to convert the non-planarity effects into distributed dislocations located on the planar interface. Then, the resulting stress fields near the crack tip are obtained by using the Fourier integral transform method. It is found that the stress fields at the crack tip are strongly influenced by non-planarity of the interface. Generally speaking, non-planarity of the interface tends to shield the crack tip by reducing the crack-tip stress concentration.  相似文献   

9.
A plane stress finite element analysis was implemented to understand the stress fields for a crack lying at an aluminium/epoxy interface of a compact tension and shear specimen. The interaction integral method was used to separate the mixed-mode stress intensity factors at the interfacial crack-tip under different loading modes, which can have important implications for characterisation of interfacial crack growth.  相似文献   

10.
Using Beom and Atluri's complete eigen-function solutions for stresses and displacements near the tip of an interfacial crack between dissimilar anisotropic media, a hybrid crack tip finite-element is developed. This element, as well as a mutual integral method are used to determine the stress intensity factors for an interfacial crack between dissimilar anisotropic media. The hybrid element has, for its Galerkin basis functions, the eigen-function solutions for stresses and displacements embedded within it. The mutual integral approach is based on the application of the path-independent J integral to a linear combination of two solutions: one, the problem to be solved, and the second, an auxiliary solution with a known singular solution. A comparison with exact solutions is made to determine the accuracy and efficiency of both the methods in various mixed mode interfacial crack problems. The size of the hybrid element was found to have very little effect on the accuracy of the solution: an acceptable numerical solution can be obtained with a very coarse mesh by using a larger hybrid element. An equivalent domain integral method is used in the application of the mutual integral instead of the line integral method. It is shown that the calculated mutual integral is domain independent. Therefore, the mutual integral can be evaluated far away from the crack-tip where the finite element solution is more accurate. In addition, numerical examples are given to determine the stress intensity factors for a delamination crack in composite lap joints and at plate-stiffener interfaces.This work was supported by a grant from the NASA Langley Research Center.  相似文献   

11.
The problem of a subsurface crack parallel to the surface of a half space was studied by the finite element method. Without using the interface or gap elements over the crack faces, the crack faces would penetrate into each other for the traction-free boundary condition under shear loading, which is physically impossible. Using the gap elements, this problem was avoided, and a contact zone was observed near one crack tip. The size of the contact zone decreases but the maximum contact pressure at the closed crack tip increases as the crack approaches the surface. For tensile and shear loadings, both K I (mode I stress intensity factor) and K II (mode II stress intensity factor) increase as the crack approaches the surface. For shear loading there is no K I at the closed tip and the K I and K II at the open tip are comparable as the crack approaches the surface.  相似文献   

12.
An extended finite element method scheme for a static cohesive crack is developed with a new formulation for elements containing crack tips. This method can treat arbitrary cracks independent of the mesh and crack growth without remeshing. All cracked elements are enriched by the sign function so that no blending of the local partition of unity is required. This method is able to treat the entire crack with only one type of enrichment function, including the elements containing the crack tip. This scheme is applied to linear 3‐node triangular elements and quadratic 6‐node triangular elements. To ensure smooth crack closing of the cohesive crack, the stress projection normal to the crack tip is imposed to be equal to the material strength. The equilibrium equation and the traction condition are solved by the Newton–Raphson method to obtain the nodal displacements and the external load simultaneously. The results obtained by the new extended finite element method are compared to reference solutions and show excellent agreement. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The asymptotic structures of crack-tip stress and deformation fields are investigated numerically for quasi-static and dynamic crack growth in isotropic linear hardening elastic-plastic solids under mode I, plane stress, and small-scale yielding conditions. An Eulerian type finite element scheme is employed. The materials are assumed to obey the von Mises yield criterion and the associated flow rule. The ratio of the crack-tip plastic zone size to that of the element nearest to the crack tip is of the order of 1.6 × 104. The results of this study strongly suggest the existence of crack-tip stress and strain singularities of the type r s (s < 0) at r=0, where r is the distance to the crack tip, which confirms the asymptotic solutions of variable-separable type by Amazigo and Hutchinson [1] and Ponte Castañeda [2] for quasi-static crack growth, and by Achenbach, Kanninen and Popelar [3] for dynamic crack propagation. Both the values of the parameter s and the angular stress and velocity field variations from the present full-field finite element analysis agree very well with those from the analytical solutions. It is found that the dominance zone of the r s-singularity is quite large compared to the size of the crack-tip active plastic zone. The effects of hardening and inertia on the crack-tip fields as well as on the shape and size of the crack-tip active plastic zone are also studied in detail. It is discovered that as the level of hardening decreases and the crack propagation speed increases, a secondary yield zone emerges along the crack flank, and kinks in stress and velocity angular variations begin to develop. This dynamic phenomenon observable only for rapid crack growth and for low hardening materials may explain the numerical difficulties, in obtaining solutions for such cases, encountered by Achenbach et al. who, in their asymptotic analysis, neglected the existence of reverse yielding zones along the crack surfaces.  相似文献   

14.
This paper presents the singular characteristics of heat flux in the vicinity of the crack-tip for two dimensional transient thermoelastic fracture problems subjected to general heat transfer conditions at crack surfaces. Based on a restricted variational principle, a rigorous hybrid finite element procedure is then developed to perfectly describe the singularities of heat flux and thermal stress induced at the crack-tip. For verification purposes, the examples of transient thermoelastic problems with insulated crack surfaces are first analyzed. Excellent agreements between the computed results and referenced solutions can be drawn. To evaluate the influence of heat convection and radiation on the computation of temperature distributions and thermal stress intensity factors, several numerical examples are also presented.  相似文献   

15.
Accurate yield surfaces of plane strain single-edge-cracked specimens having shallow as well as deep cracks are developed using finite element limit analyses and monotonic interpolation functions. Fully plastic shallow crack configurations are classified based on certain aspects of the yield surfaces. Relationships between incremental plastic crack tip and crack mouth opening displacements and incremental load point displacement/rotation are obtained for a wide range of relative crack depths and loading ratios. Fully plastic crack-tip fields for a sufficiently deep crack in a single-edge cracked specimen are examined to provide the stress triaxiality and the angular orientation of flow line at the crack tip in terms of the remotely applied tension-to-bending ratio. Evidence for fully plastic crack-tip stress fields consisting of an incomplete Prandtl fan and a crack plane constant state region is discussed.  相似文献   

16.
Atomistic simulation of transformation toughening due to martensitic transformation in Ti–V phase particles dispersed in a γ-TiAl matrix containing cracks requires knowledge of the continuum elastic stress and displacement fields for the problem of a crack touching the γ–β interface. Because of the anisotropic characters of the two phases, analytical solutions for these fields are not available and they must be determined numerically. In the present paper a finite element method-based eigenanalysis is developed and subsequently applied to the γ–β system to determine the order of the stress singularity and the angular dependences of the stress and displacement fields. These fields are subsequently used to enrich the finite elements surrounding the crack tip and, through the use of the general finite element code ABAQUS, to determine the generalized stress intensity factors and thus the total singular crack-tip stress and displacement fields. It is found that there are two coupled singular terms in the singular stress and displacement fields, and consequently pure (uniaxial) mode I loading gives rise to mixed modes I–II near-crack-tip behaviour. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

17.
In this paper, Voronoi cell finite element method (VCFEM), introduced by Ghosh and coworkers (1993), is applied to describe the matrix-inclusion interfacial debonding for particulate reinforced composites. In proposed VCFEM, the damage initiation is simulated by partly debonding of the interface under the assumption of the critical normal stress law, and gradual matrix-inclusion separations are simulated with an interface remeshing method that a critical interfacial node at the crack tip is replaced by a node pairs along the debonded matrix-inclusion interface and a more pair of nodes are needed to be added on the crack interface near the crack tip in order to better facilitate the free-traction boundary condition and the jumps of solution. The comparison of the results of proposed VCFEM and commercial finite element packages MARC and ABAQUS. Examples have been given for a single inclusion of gradually interfacial debonding and for a complex structure with 20 inclusions to describe the interfacial damage under plane stress conditions. Good agreements are obtained between the VCFEM and the general finite element method. It appears that this method is a more efficient way to deal with the interfacial damage of composite materials. The financial support by the Special Funds for the National Major Fundamental Research Projects G19990650 and the National Natural Science Foundation of China No. 59871022 are gratefully acknowledged.  相似文献   

18.
The thermal stress intensity factors for interface cracks of Griffith and symmetric lip cusp types under vertical uniform heat flow in a finite body are calculated by the boundary element method. The boundary conditions on the crack surfaces are insulated or fixed to constant temperature. The relationship between the stress intensity factors and the displacements on the nodal point of a crack-tip element is derived. The numerical values of the thermal stress intensity factors for an interface Griffith crack in an infinite body are compared with the previous solutions. The thermal stress intensity factors for a symmetric lip cusp interface crack in a finite body are calculated with respect to various effective crack lengths, configuration parameters, material property ratios and the thermal boundary conditions on the crack surfaces. Under the same outer boundary conditions, there are no appreciable differences in the distribution of thermal stress intensity factors with respect to each material property. However, the effect of crack surface thermal boundary conditions on the thermal stress intensity factors is considerable.  相似文献   

19.
Summary The problem of the small-scale yielding (SSY) plane-strain asymptotic fields for the interfacial free-edge joint singularity is examined in detail, and comparisons are made with the interfacial crack tip. The geometries are idealized as isotropic elasto-plastic materials with Ramberg-Osgood power-law hardening properties bonded to a rigid elastic substrate. The resulting fields are shown to be singular and are presented in terms of radial and angular distributions of stress and displacement, and as idealized plastic slip-line sectors. A fourth-order Runge-Kutta numerical method provides solutions to fundamental equations of equilibrium and compatibility that are verified with those of a highly focused finite element (FE) analysis. It is shown that, as in the case of the crack, the asymptotic singular fields are only dependent on the hardening parameter and only a small range of interfacial mode-mix ratios are permitted. The order for the stress singularity may be formulated in terms of the hardening parameter and the elastic solution for incompressible material. The rigid-slip-line field for the interfacial free-edge joint is presented, and it is shown that there is some significant similarity between the asymptotic fields of the deviatoric polar stresses for the joint and the crack-tip having an elastic wedge sector.  相似文献   

20.
The stress field around the tip of an elliptically blunted crack induced by an edge dislocation has been obtained in closed form, from which the mode I and mode II stress intensity factors induced by the edge dislocation are obtained. The solutions apply to the edge dislocation either emitted from crack-tip surface or originated elsewhere, and for the dislocation located anywhere around the crack tip. The effects of the crack length, the crack-tip bluntness, the origination and position of the dislocation on the stress intensity factors are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号