首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The KlPCK1 gene encoding phosphoenolpyruvate carboxykinase (PEPCK; ATP-dependent) was cloned from the Kluyveromyces lactis genome using a PCR amplicon from Saccharomyces cerevisiae PCK1 gene as a probe. A DNA fragment of about 4·8 kb containing KlPCK1 complemented PEPCK activity of the mutant of S. cerevisiae defective in PEPCK. The KlPCK1 gene has an open reading frame of 1629 bp (543 amino acids). The KlPCK1 nucleotide sequence and deduced amino acid sequence showed 76% and 84% homologies to those of S. cerevisiae PCK1, respectively. Multiple alignment of ATP-dependent PEPCK genes shows highly conserved regions. The nucleotide sequence of KlPCK1 has been submitted to the DDBJ/GenBank/EMBL data bank with Accession Number U88575. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
We report the cloning and sequencing of a gene from Kluyveromyces lactis with high homology to the SRB10 gene (alias UME5, SSN3, GIG2, NUT7, RYE5) from Saccharomyces cerevisiae and other organisms. The KlSRB10 gene is located in a similar configuration to that found in S. cerevisiae, flanked by NOT4 and a gene with high similarity to YPL041c. The translated protein contains 593 amino acids and the characteristic domains of kinases from the CMGC subgroup. The functional relationship to yeast SRB10 is demonstrated by complementation of mutant phenotypes in a haploid S. cerevisiae strain containing a null allele.  相似文献   

3.
The complete sequence of a cytochrome c gene from Kluyveromyces lactis including its upstream region is reported. Sequence of the translated open reading frame is discussed in terms of cytochrome c structural requirements. Putative regulatory signals in the upstream region are described and compared with reported sequences which modulate the expression of respiratory-related yeast genes.  相似文献   

4.
5.
源自乳酸克鲁维酵母的β-半乳糖苷酶为胞内酶,其具有乳糖水解能力和半乳糖苷的转移作用。本实验运用单因素试验方法研究乳酸克鲁维酵母乳糖酶的性质。结果表明该酶在pH值为6.0~7.0和37℃~48℃间比较稳定,酶作用最适pH值在6.5,最适反应温度为43℃,Mn2+、Mg2+等对酶有明显的激活作用,而Zn2+、Cu2+等对酶活有抑制作用。该酶以ONPG底物的米氏常数为4.186mmol/L。  相似文献   

6.
乳酸克鲁维酵母乳糖酶性质的研究   总被引:2,自引:0,他引:2  
采用单因素试验方法研究了乳酸克鲁维酵母乳糖酶的性质,该酶在pH值为6.0~8.4范围内比较稳定,酶作用最适pH值在6.4~6.6;最适反应温度为45℃,并具有良好的热稳定性;Mn2+,Mg2+,Na+等对酶有明显的激活作用,而重金属离子如Zn2+和Cu2+等对酶活有抑制作用。实验测定得该酶以ONPG为底物的米氏常数为3.348mmol/L。  相似文献   

7.
Four structural genes encoding isozymes of the alcohol dehydrogenase (ADH) system in the yeast Kluyveromyces lactis have been identified by hybridization to ADH2 DNA probes from Saccharomyces cerevisiae. In this paper we report on the isolation of KlADH4 and the complete sequencing of KlADH3 and KlADH4, two genes which show high homology to KlADH1, the ADH gene previously isolated in K. lactis, and to the ADH genes of S. cerevisiae. When compared with KlADH1, both KlADH3 and KlADH4 encode amino-terminal extensions which show the characteristics of the mitochondrial targeting sequences. These extensions are poorly conserved both at the nucleotide and the amino acid level. Surprisingly, the KlADH4 extension shows a higher identity at the amino acid level to the one encoded by ADH3 of S. cerevisiae than to the KlADH3 presequence. KlADH3 and KlADH4, in contrast to the ADH3 gene of S. cerevisiae, show a strong bias in the choice of codons.  相似文献   

8.
本研究应用具有超量分泌表达能力的乳酸克鲁维酵母(Kl SEL1基因突变型)、游离型载体p KDU7以及整合型表达载体p KLAC1,对具有5个氨基酸点突变的葡萄糖氧化酶(该突变酶的比活是野生型葡萄糖氧化酶的3.24倍)进行分泌表达。最终获得了一株可以超量分泌表达葡萄糖氧化酶的菌株,其最大产量为70±7 k U/L。这是现今已报道的分泌表达葡萄糖氧化酶能力最高的乳酸克鲁维重组菌株,为食品安全级的葡萄糖氧化酶的生产和应用提供了新途径。   相似文献   

9.
Phosphofructokinase from Kluyveromyces lactis was purified by 180-fold enrichment, elaborating the following steps: cell disruption, polyethylene glycol precipitation, affinity chromatography, size exclusion chromatography on Sepharose 6B and on Bio-Sil SEC 400 and ion exchange chromatography. The homogeneous enzyme exhibits a molecular mass of 845±20 kDa as determined by sedimentation equilibrium measurements and a specific activity of 100 units/mg protein. The apparent sedimentation coefficient was found to be s20,C=20·7±0·6 S and no significant dependence on the protein concentration was observed in a range from 0·2 to 8 mg protein/ml. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis revealed two bands corresponding to molecular masses of 119±5 kDa and 102±5 kDa, respectively. Thus, the enzyme assembles as octamer composed of two types of subunits. From Western blot analysis applying subunit-specific monoclonal antibodies raised against Saccharomyces cerevisiae phosphofructokinase and from the determination of the N-terminal amino acid sequence, the conclusion was drawn that the 102 kDa-subunit corresponds to the β-subunit of the S. cerevisiae enzyme. In contrast to bakers' yeast phosphofructokinase, the K. lactis enzyme exhibits no cooperativity with respect to the substrate fructose 6-phosphate. Both activators AMP and fructose 2,6-bisphosphate decrease the Michaelis constant with respect to this substrate. The enzyme from K. lactis is also inhibited by ATP. Fructose 2,6-bisphosphate or AMP diminish the ATP-inhibition. In contrast to the phosphofructokinase from S. cerevisiae, where fructose 2,6-bisphosphate turned out to be more efficient than AMP, both activators exert similar effects on the K. lactis enzyme. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
The KlLYS2 gene, encoding the alpha-aminoadipate reductase of Kluyveromyces lactis, was isolated by complementation of a lysA1 mutant. The deduced amino acid sequence shared an identity of 73% with the LYS2 product of Saccharomyces cerevisiae. Despite the high sequence homology of the alpha-aminoadipate reductase genes, the two yeast species differently responded to the presence of alpha-aminoadipate in the medium. Wild-type S. cerevisiae is known to be sensitive to alpha-aminoadipate, but becomes resistant when mutated to lys2. In contrast, K. lactis strains were found to be naturally resistant to alpha-aminoadipate. Therefore, the positive selection procedure for the isolation of lys2 mutants on alpha-aminoadipate, as practised in S. cerevisiae, cannot be applied to K. lactis. A possible reason of this difference may be that the catalytic rate of the alpha-aminoadipate reductase differs in the two yeasts. The EMBL/Genbank Accession No. for the KlLYS2 gene is AJ504405.  相似文献   

11.
The killer system of Kluveromyces lactis is associated with two linear DNA plasmids, pGKL1 and pGKL2. The killer toxin and the immunity determinant are coded for by pGKL1. Mutations which we have named KEX1. The KEX1 gene of K. lactis has been cloned by complementation of kex1 mutations by using a recombinant plasmid pool containing the entire Kluyveromyces lactis genome, on a multicopy plasmid KEp6, which contains the Saccharomyces cerevisiae URA3 gene as a marker. Genetic analyses of strains carrying a distrupted kex1 allele demonstrated that the cloned DNA corresponded to the KEX1 gene. The cloned KEX1 gene of K. lactis has low but significant sequence homology with the KEX2 gene of Saccharomyces cerevisiae. In vivo complementation of the kex1 mutations of K. lactis by the KEX2 gene of S. cerevisiae, and complementation of the kex2 mutations of S. Cerevisiae by the KEX1 gene of K. lactis, demonstrated that KEX1 of K. Lactis is functionally related to the KEX2 gene of S. cerevisiae. K. lactis diploids homozygous for kex1 are deficient for sporulation.  相似文献   

12.
人溶菌酶是一种天然广谱抑菌物质,在食品和医药工业有潜在应用前景。为获得高活性的人溶菌酶制剂,采用乳酸克鲁维酵母表达系统,对经密码子优化的人溶菌酶基因(h LYZ)进行分泌表达。将人工合成h LYZ插入到乳酸克鲁维酵母表达载体p KLAC1,构建重组载体p KLAC1-h LYZ,并用电脉冲法将SacⅡ线性化的重组质粒转化到乳酸克鲁维酵母GG799中。通过全细胞PCR鉴定,最后获得了一株多拷贝整合的基因工程菌h LYZ1。工程菌可以分泌表达分子量约14 ku的目的蛋白质,与预期大小相符。摇瓶发酵培养128 h,酶活最高达到1430 U/mL。抗菌活性检测结果显示,重组人溶菌酶对溶壁微球菌、大肠杆菌和枯草芽孢杆菌有较好的溶菌活性。本研究成功地在乳酸克鲁维酵母中表达了重组人溶菌酶,表达的蛋白具有较高的酶活性,试验结果为利用乳酸克鲁维酵母表达系统规模化生产重组人溶菌酶奠了基础。  相似文献   

13.
14.
Phosphomannomutase (PMM) is a key enzyme, which catalyses one of the first steps in the glycosylation pathway, the conversion of D-mannose-6-phosphate to D-mannose-1-phosphate. The latter is the substrate for the synthesis of GDP-mannose, which serves as the mannosyl donor for the glycosylation reactions in eukaryotic cells. In the yeast Saccharomyces cerevisiae PMM is encoded by the gene SEC53 (ScSEC53) and the deficiency of PMM activity leads to severe defects in both protein glycosylation and secretion. We report here on the isolation of the Kluyveromyces lactis SEC53 (KlSEC53) gene from a genomic library by virtue of its ability to complement a Saccharomyces cerevisiae sec53 mutation. The sequenced DNA fragment contained an open reading frame of 765 bp, coding for a predicted polypeptide, KlSec53p, of 254 amino acids. The KlSec53p displays a high degree of homology with phosphomannomutases from other yeast species, protozoans, plants and humans. Our results have demonstrated that KlSEC53 is the functional homologue of the ScSEC53 gene. Like ScSEC53, the KlSEC53 gene is essential for K. lactis cell viability. Phenotypic analysis of a K. lactis strain overexpressing the KlSEC53 gene revealed defects expected for impaired cell wall integrity.  相似文献   

15.
The KlCMD1 gene was isolated from a Kluyveromyces lactis genomic library as a suppressor of the Saccharomyces cerevisiae temperature-sensitive mutant spc110-124, an allele previously shown to be suppressed by elevated copy number of the S. cerevisiae calmodulin gene CMD1. The KlCMD1 gene encodes a polypeptide which is 95% identical to S. cerevisiae calmodulin and 55% identical to calmodulin from Schizosaccharomyces pombe. Complementation of a S. cerevisiae cmd1 deletion mutant by KlCMD1 demonstrates that this gene encodes a functional calmodulin homologue. Multiple sequence alignment of calmodulins from yeast and multicellular eukaryotes shows that the K. lactis and S. cerevisiae calmodulins are considerably more closely related to each other than to other calmodulins, most of which have four functional Ca2+-binding EF hand domains. Thus like its S. cerevisiae counterpart Cmd1p, the KlCMD1 product is predicted to form only three Ca2+-binding motifs. The KlCMD1 sequence has been assigned Accession Number AJ002021 in the EMBL/GenBank database. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
The nucleotide sequence of the cytochrome oxidase subunit 2 (cox2) and val-tRNA genes and surrounding regions from Kluyveromyces lactis mitochondrial DNA is reported. Analysis of the coding region shows that the codons CUN (Thr), CGN (Arg) and AUA (Met) are absent in this gene. A single sequence, ATATAAGTAA, identical to the baker's yeast mtRNA polymerase recognition site, was detected upstream of val-tRNA. This sequence is absent from regions between val-tRNA-cox2 and cox2-cox1. In addition a sequence AATAATATTCTT, identical to the mRNA processing site in other yeast mitochondrial genomes is present 32-43 bp downstream to the TAA stop codon for the cox2 gene. Another short conserved sequence of 5 bp, TCTAA, is present upstream of the coding regions of cox2 genes in several yeasts, including K. lactis, but is not present upstream of other genes. Comparison of cox2 sequences from other organisms indicates that the mitochondrial DNA of K. lactis is closely related to that of Saccharomyces cerevisiae.  相似文献   

17.
乳酸克鲁维酵母(Kluyveromyces lactis)是一种典型的非常规酵母,在微生物基础研究和应用研究方面都有着非常重要的用途。该酵母具有食品安全级别高、蛋白分泌能力强、整合表达能力高效及大规模发酵能力优异等特点,因此,工业应用前景较为广阔。目前,乳酸克鲁维酵母作为蛋白表达系统已在食品和医药等行业中得到了广泛应用。近年来,国内外生物技术领域的科研人员以乳酸克鲁维酵母作为底盘细胞,利用合成生物学技术已经成功构建出了能够生产各种生化产品的微生物细胞工厂,该技术展示出了极大的发展潜力。本文主要对乳酸克鲁维酵母的菌种特点、合成生物学元件、遗传操作工具、基因编辑策略进行介绍,并综述乳酸克鲁维酵母作为细胞工厂的应用研究进展,可以为今后利用合成生物学方法在乳酸克鲁维酵母底盘中构建生产各种高附加值产品的高效微生物细胞工厂提供理论指导。  相似文献   

18.
The Kluyveromyces lactis linear plasmids k1 and k2 belong to the family of protein-primed linear DNA genomes, which includes adenoviruses. Here we identify the 18 kDa gene product of k2ORF5 as a novel putative single-stranded DNA binding protein, SSB. As judged from Western analysis using an epitope-tagged fusion protein and ssDNA-agarose affinity chromatography, the Orf5 protein preferentially binds to ssDNA in vitro. Consistently, electrophoretic mobility shift assays demonstrate that ssDNA plasmid probes from k1 and k2 are retarded by this Orf5-associated SSB activity. ORF5 gene shuffle-mediated mutagenesis in vivo results in k1/k2 plasmid instability, pointing towards a role for the Orf5 protein in plasmid replication. Consistently, the Orf5 protein protects ssDNA from exonuclease digestion and stimulates Klenow enzyme. Our findings suggest a functional role for the Orf5 protein as a putative SSB probably required during k1/k2 plasmid DNA synthesis.  相似文献   

19.
利用重组乳酸克鲁维酵母(Kluyveromyces lactis)GG799表达磷脂酶A2,对其产酶发酵条件进行研究。采用单因素试验和正交试验对培养基及培养条件进行优化,确定了重组菌产酶的最佳发酵条件。结果表明:最优培养基组成为葡萄糖30 g/L、酵母粉20 g/L、蛋白胨30 g/L、KH2PO4 3 g/L;最优培养条件为:发酵温度30 ℃、接种量2%(V/V)、初始pH?7.0、装液量90 mL/250 mL三角瓶、摇床转速220 r/min,在此条件下发酵培养,酶活力由(1.87±0.12)U提高到(5.35±0.27)U。  相似文献   

20.
Potassium uptake in Saccharomyces cerevisiae is mediated by at least two proteins, known as Trk1p and Trk2p. Direct involvement in cation movements has been demonstrated for Trk1p, which is the high affinity transporter. S. cerevisiae cells also show low affinity potassium uptake, perhaps mediated by Trk2p. Mutants lacking Trk1p, lose high affinity system, but when grown with moderate potassium concentrations, Trk2p seems to replace it. Mutants lacking both proteins are viable but require at least 10 mM K(+) in the medium to sustain growth. Here we report the cloning and characterization of a gene from Kluyveromyces lactis encoding a homologue of these two proteins. KlTrkp is a 1070 amino acid peptide that shows, overall, higher homology with Trk2p than with Trk1p, and its disruption gives rise to cells with deficient potassium transport and with an increased K(+) requirement for normal growth. Determination of kinetic parameters in the K. lactis wild-type and Kltrk1Delta strains, as well as in Sctrk1Delta Sctrk2Delta S. cerevisiae cells expressing KlTrk1, indicated that this is a low affinity component of a major potassium uptake system in K. lactis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号