首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In applications of the homogenization method for optimal structural topology design the solution is obtained by solving the optimahty conditions directly. This reduces the computational burden by taking advantage of closed-form solutions but it restricts the optimization model to having only one constraint. The article develops a generalized class of convex approximation methods for mathematical programming that can be used for the optimal topology homogenization problem with multiple constraints in-eluded in the model, without substantial reduction in computational efficiency. A richer class of design models can be then addressed using the hotnogenization method. Design examples illustrate the performance of the proposed solution strategy.  相似文献   

2.
An optimal design approach of machine tool bed with the aim of obtaining an eco-efficient machine structure is studied. The suggested method includes three phases. The first is the layout design optimization of stiffener plates inside bed. In order to improve the design efficiency, a simplified design model called fiber model is suggested, and the layout of the stiffener plates inside bed is optimized by changing a 3-dimensional topology design optimization problem to a 2-dimensional problem. The second is the detailed sizing optimization of stiffener plates and supporting blocks under the structure based on the initial optimal model resulted from phase one. Finally, a topology design optimization process is implemented to obtain a reasonable distribution of manufacturing holes in bed structure. By considering the manufacturing requirement, an optimal bed structure is obtained. The validity of the suggested method is confirmed by a typical cylindrical grinding machine tool bed, and the result shows that the suggested method is effective, and the optimal structure has much better mechanical and economical performance by comparing with the original structures.  相似文献   

3.
研究了具有模糊参数的连续体结构在模糊载荷作用下的拓扑优化设计问题。利用信息熵将模糊变量转换为随机变量,构建了随机载荷作用下的随机参数的连续体结构的拓扑优化设计数学模型,以结构的形状拓扑信息为设计变量,结构总质量均值极小化为目标函数,满足单元应力可靠性为约束条件,利用分布函数法对应力可靠性约束进行了等价显式化处理。基于随机因子法,利用代数综合法导出了应力响应的数字特征的计算表达式。采用双方向渐进结构优化(BESO)方法求解。通过两个算例验证了该文模型及求解方法的合理性和有效性。  相似文献   

4.
We present a novel method for computational design of adaptive shape-memory alloy (SMA) structures via topology optimization. By optimally distributing a SMA within the prescribed design domain, the proposed algorithm seeks to tailor the two-way shape-memory effect (TWSME) and pseudoelasticity response of the SMA materials. Using a phenomenological material model, the thermomechanical response of the SMA structure is solved through inelastic finite element analysis, while assuming a transient but spatially uniform temperature distribution. The material distribution is parameterized via a SIMP formulation, with gradient-based optimization used to perform the optimization search. We derive a transient, bilevel adjoint formulation for analytically computing the design sensitivities. We demonstrate the proposed design framework using a series of two-dimensional thermomechanical benchmark problems. These examples include design for optimal displacement due to the TWSME, and design for maximum mechanical advantage while accounting for pseudoelasticity.  相似文献   

5.
讨论了敷设阻尼材料的薄板结构考虑瞬态响应时阻尼材料层的最优布局问题。基于SIMP方法构造人工阻尼材料惩罚模型和结构拓扑优化模型,以阻尼材料的相对密度作为设计变量,在给定阻尼材料用量的条件下,最小化结构瞬态位移响应的时间积分。由于结构整体呈现非比例阻尼特性,采用逐步积分法对结构的振动方程进行求解。通过伴随变量法得到目标函数对设计变量的灵敏度表达式,在此基础上采用基于梯度的移动渐近线方法求解。数值算例验证了优化模型与算法的合理性和有效性。  相似文献   

6.
提出应用连续体结构拓扑优化ICM法对高层建筑大型支撑体系进行拓扑优化。针对高层建筑规范对结构刚度限值是以层间相对位移差形式给出、并结合结构拓扑优化特点,推导了相对位移差敏度分析的伴随法公式,有效提高了计算效率。应用ICM法建立位移约束下结构重量极小化的优化模型,与高层建筑规范对结构刚度限值要求的提法更符合,得到的最优拓扑完全满足规范要求。所提方法应用在概念设计阶段,提供了一种自动化的分析计算及优化设计工具,可以有效地弥补基于经验设计的不足。  相似文献   

7.
We consider the solution of finite element discretized optimum sheet problems by an iterative algorithm. The problem is that of maximizing the stiffness of a sheet subject to constraints on the admissible designs and unilateral contact conditions on the displacements. The model allows for zero design volumes, and thus constitutes a true topology optimization problem. We propose and evaluate a subgradient optimization algorithm for a reformulation into a non-differentiable, convex minimization problem in the displacement variables. The convergence of the method and its low computational complexity are established. An optimal design is derived through a simple averaging scheme which combines the solutions to the linear design problems solved within the subgradient method. To illustrate the efficiency of the algorithm and investigate the properties of the optimal designs, thealgorithm is numerically tested on some medium- and large-scale problems. © 1997 by John Wiley & Sons, Ltd.  相似文献   

8.
讨论了附加阻尼层的薄板结构在非平稳随机力作用下以减振为目标的阻尼材料层的拓扑优化问题。建立了以阻尼材料的相对密度为设计变量,以结构非平稳响应位移方差最小化为目标和阻尼材料用量为约束条件的拓扑优化模型。由于结构受到非平稳随机激励作用,其随机响应可以采用时域显式法快速求解;随机响应方差对设计变量的灵敏度采用了基于伴随变量法的时域显式法进行分析,并采用优化准则法求解优化问题。数值算例验证了所提方法在非平稳随机激励作用下进行动力拓扑优化减振的可行性与有效性。  相似文献   

9.
稳态热传导结构非概率可靠性拓扑优化设计   总被引:1,自引:0,他引:1  
研究具有区间参数的稳态热传导结构在散热弱度非概率可靠性约束下的拓扑优化设计问题。建立了以单元相对导热系数为设计变量,导热材料体积极小化为目标函数,满足散热弱度非概率可靠性为约束条件的稳态热传导结构的拓扑优化设计数学模型。基于区间因子法,推导出散热弱度的均值及离差的计算表达式。采用渐进结构优化法的求解策略与方法,并利用过滤技术消除优化过程中的数值不稳定性现象。通过算例验证文中模型及求解策略、方法的合理性和有效性。  相似文献   

10.
This paper presents a novel framework for simultaneous optimization of topology and laminate properties in structural design of laminated composite beam cross sections. The structural response of the beam is evaluated using a beam finite element model comprising a cross section analysis tool which is suitable for the analysis of anisotropic and inhomogeneous sections of arbitrary geometry. The optimization framework is based on a multi-material topology optimization model in which the design variables represent the amount of the given materials in the cross section. Existing material interpolation, penalization, and filtering schemes have been extended to accommodate any number of anisotropic materials. The methodology is applied to the optimal design of several laminated composite beams with different cross sections. Solutions are presented for a minimum compliance (maximum stiffness) problem with constraints on the weight, and the shear and mass center positions. The practical applicability of the method is illustrated by performing optimal design of an idealized wind turbine blade subjected to static loading of aerodynamic nature. The numerical results suggest that the proposed framework is suitable for simultaneous optimization of cross section topology and identification of optimal laminate properties in structural design of laminated composite beams.  相似文献   

11.
This paper extends current concepts of topology optimization to the design of structures made of nonlinear microheterogeneous materials. The objective is to maximize the macroscopic structural stiffness for a prescribed material volume usage while accounting for the nonlinearity and the microstructure of the material. The resulting design problem considers two scales: the macroscopic scale at which the optimization is performed and the microscopic scale at which the material heterogeneities and the nonlinearities are observed. The topology optimization at the macroscopic scale is performed by means of the bi‐directional evolutionary structural optimization method. The solution of the macroscopic boundary value problem requires as inputs the effective constitutive response with full consideration of the microstructure. While computational homogenization methods such as the FE2 method could be used to solve the nonlinear multiscale problem, the associated numerical expense (CPU time and memory) is highly unacceptable. In order to regain the computational feasibility of the computational scale transition, a recent model reduction technique of the authors is employed: the potential‐based reduced basis model order reduction with graphics processing unit acceleration. Numerical examples show the efficiency of the resulting nonlinear two‐scale designs. The impact of different load amplitudes on the design is examined. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a mixed integer programming (MIP) formulation for robust topology optimization of trusses subjected to the stress constraints under the uncertain load. A design‐dependent uncertainty model of the external load is proposed for dealing with the variation of truss topology in the course of optimization. For a truss with the discrete member cross‐sectional areas, it is shown that the robust topology optimization problem can be reduced to an MIP problem, which is solved globally. Numerical examples illustrate that the robust optimal topology of a truss depends on the magnitude of uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Bilateral filtering for structural topology optimization   总被引:1,自引:0,他引:1  
Filtering has been a major approach used in the homogenization‐based methods for structural topology optimization to suppress the checkerboard pattern and relieve the numerical instabilities. In this paper a bilateral filtering technique originally developed in image processing is presented as an efficient approach to regularizing the topology optimization problem. A non‐linear bilateral filtering process leads to a suitable problem regularization to eliminate the checkerboard instability, pronounced edge preserving smoothing characteristics to favour the 0–1 convergence of the mass distribution, and computational efficiency due to its single pass and non‐iterative nature. Thus, we show that the application of the bilateral filtering brings more desirable effects of checkerboard‐free, mesh independence, crisp boundary, computational efficiency and conceptual simplicity. The proposed bilateral technique has a close relationship with the conventional domain filtering and range filtering. The proposed method is implemented in the framework of a power‐law approach based on the optimality criteria and illustrated with 2D examples of minimum compliance design that has been extensively studied in the recent literature of topology optimization and its efficiency and accuracy are highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Significant performance improvements can be obtained if the topology of an elastic structure is allowed to vary in shape optimization problems. We study the optimal shape design of a two-dimensional elastic continuum for minimum compliance subject to a constraint on the total volume of material. The macroscopic version of this problem is not well-posed if no restrictions are placed on the structure topoiogy; relaxation of the optimization problem via quasiconvexification or homogenization methods is required. The effect of relaxation is to introduce a perforated microstructure that must be optimized simultaneously with the macroscopic distribution of material. A combined analytical-computational approach is proposed to solve the relaxed optimization problem. Both stress and displacement analysis methods are presented. Since rank-2 layered composites are known to achieve optimal energy bounds, we restrict the design space to this class of microstructures whose effective properties can easily be determined in explicit form. We develop a series of reduced problems by sequentially interchanging extremization operators and analytically optimizing the microstructural design fields. This results in optimization problems involving the distribution of an adaptive material that continuously optimizes its microstructure in response to the current state of stress or strain. A further reduced problem, involving only the response field, can be obtained in the stress-based approach, but the requisite interchange of extremization operators is not valid in the case of the displacement-based model. Finite element optimization procedures based on the reduced displacement formulation are developed and numerical solutions are presented. Care must be taken in selecting the discrete function spaces for the design density and displacement response, since the reduced problem is a two-field, mixed variational problem. An improper choice for the solution space leads to instabilities in the optimal design similar to those encountered in mixed formulations of the Stokes problem.  相似文献   

15.
This article describes a numerical solution to the topology optimization problem using a time-evolution equation. The design variables of the topology optimization problem are defined as a mathematical scalar function in a given design domain. The scalar function is projected to the normalized density function. The adjoint variable method is used to determine the gradient defined as the ratio of the variation of the objective function or constraint function to the variation of the design variable. The variation of design variables is obtained using the solution of the time-evolution equation in which the source term and Neumann boundary condition are given as a negative gradient. The distribution of design variables yielding an optimal solution is obtained by time integration of the solution of the time-evolution equation. By solving the topology optimization problem using the proposed method, it is shown that the objective function decreases when the constraints are satisfied. Furthermore, we apply the proposed method to the thermal resistance minimization problem under the total volume constraint and the mean compliance minimization problem under the total volume constraint.  相似文献   

16.
A comprehensive solution for bus frame design is proposed to bridge multi-material topology optimization and cross-sectional size optimization. Three types of variables (material, topology and size) and two types of constraints (static stiffness and frequencies) are considered to promote this practical design. For multi-material topology optimization, an ordered solid isotropic material with penalization interpolation is used to transform the multi-material selection problem into a pure topology optimization problem, without introducing new design variables. Then, based on the previously optimal topology result, cross-sectional sizes of the bus frame are optimized to further seek the least mass. Sequential linear programming is preferred to solve the two structural optimization problems. Finally, an engineering example verifies the effectiveness of the presented method, which bridges the gap between topology optimization and size optimization, and achieves a more lightweight bus frame than traditional single-material topology optimization.  相似文献   

17.
Genetic algorithms (GAs) have become a popular optimization tool for many areas of research and topology optimization an effective design tool for obtaining efficient and lighter structures. In this paper, a versatile, robust and enhanced GA is proposed for structural topology optimization by using problem‐specific knowledge. The original discrete black‐and‐white (0–1) problem is directly solved by using a bit‐array representation method. To address the related pronounced connectivity issue effectively, the four‐neighbourhood connectivity is used to suppress the occurrence of checkerboard patterns. A simpler version of the perimeter control approach is developed to obtain a well‐posed problem and the total number of hinges of each individual is explicitly penalized to achieve a hinge‐free design. To handle the problem of representation degeneracy effectively, a recessive gene technique is applied to viable topologies while unusable topologies are penalized in a hierarchical manner. An efficient FEM‐based function evaluation method is developed to reduce the computational cost. A dynamic penalty method is presented for the GA to convert the constrained optimization problem into an unconstrained problem without the possible degeneracy. With all these enhancements and appropriate choice of the GA operators, the present GA can achieve significant improvements in evolving into near‐optimum solutions and viable topologies with checkerboard free, mesh independent and hinge‐free characteristics. Numerical results show that the present GA can be more efficient and robust than the conventional GAs in solving the structural topology optimization problems of minimum compliance design, minimum weight design and optimal compliant mechanisms design. It is suggested that the present enhanced GA using problem‐specific knowledge can be a powerful global search tool for structural topology optimization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Linyuan Shang 《工程优选》2016,48(6):1060-1079
This article investigates topology optimization of a bi-material model for acoustic–structural coupled systems. The design variables are volume fractions of inclusion material in a bi-material model constructed by the microstructure-based design domain method (MDDM). The design objective is the minimization of sound pressure level (SPL) in an interior acoustic medium. Sensitivities of SPL with respect to topological design variables are derived concretely by the adjoint method. A relaxed form of optimality criteria (OC) is developed for solving the acoustic–structural coupled optimization problem to find the optimum bi-material distribution. Based on OC and the adjoint method, a topology optimization method to deal with large calculations in acoustic–structural coupled problems is proposed. Numerical examples are given to illustrate the applications of topology optimization for a bi-material plate under a low single-frequency excitation and an aerospace structure under a low frequency-band excitation, and to prove the efficiency of the adjoint method and the relaxed form of OC.  相似文献   

19.
It is well known that the structural performance of lightweight cellular solids depends greatly on the design of the representative volume element (RVE). In this article, an integrated topology optimization procedure is developed for the global stiffness maximization of 2D periodic and cyclic-symmetry cellular solids. A design variable linking technique and a superelement method are applied to model the structural periodicity and to reduce the computing time. In order to prevent the numerical instabilities associated with checkerboards in the design process, the quadratic perimeter constraint is used. Finally, the topology optimization problem is solved by the dual optimization algorithm. Several numerical examples are used to test the efficiency of the optimization procedure. Results show that the optimal topology of the RVE is not unique. It greatly depends on the size of the RVE. The computing efficiency can be greatly improved by means of the superelement technique. Also, for the optimal solution, the equivalent torsional rigidity has been compared with what is in the literature, to check the structural efficiency of the obtained topology. It has been observed that the current topology solution has the strongest rigidity when the same volume fraction of solid-phase materials is used.  相似文献   

20.
We present a method for formulating the design problem of maximizing the transduction efficiency of a magnetostrictive patch-type transducer as a topology optimization problem. Unlike existing methods based on magnetic analysis alone, our method is based on a coupled magnetomechanical analysis. It employs a quasi-static magnetomechanical transduction model relating applied magnetic field and induced stress in a magnetostrictive patch to facilitate design optimization. For the generation of a specific elastic wave mode, not only the patch shape but also the state of patch-waveguide bonding should be optimized simultaneously. We therefore developed a modified topology optimization formulation. The optimal results are consistent with physical intuition and some existing experimental findings for the case of torsional and longitudinal waves in a cylindrical waveguide.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号