首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism of the gaseous reduction of hematite grains to magnetite was studied. Grav-imetric measurements were carried out for the reduction of Carol Lake hematite pellets and grains in CO-CO2 atmospheres over the temperature range 500 to 1100°C. The pore size distribution in the reduced magnetite was measured by mercury porosimetry. Partially reduced grains were examined by optical microscopy. At temperatures below 800°C, the reduction of a hematite grain to magnetite occurred at a well-defined shrinking-core inter-face. The average pore size in magnetite formed at 600°C was found to be 0.03 μm. An es-timate of the rate of CO diffusion through pores of this size indicated that the reaction rate at 600°C was controlled by a step near the hematite-magnetite interface. At temperatures above 800°C, the reaction mechanism became altered due to the preferential growth of magnetite along a single direction in each hematite grain. The reduction rate decreased with an increase in temperature, and no microporosity was present in magnetite formed at 1000°C and above. It was postulated that the reaction rate was controlled by the rate of formation of fresh nuclei and by their rate of subsequent growth. Formerly Professor of Applied Metallurgy, Imperial College  相似文献   

2.
Carol Lake hematite particles were reduced to magnetite at 600 and 1000 °C using CO + CO2 mixtures. The rate of reduction was measured in gravimetric tests and structural changes followed by optical microscopy, BET surface area, and mercury porosimetry. At 600 °C, the reduction of each grain approximately followed the shrinking core model, and fine pores were created in the magnetite produced. The volume of pores was constant at a porosity level of 8.8 pct, but the average pore size depended on the rate of oxygen removal, and finer pores were obtained under conditions of fast reduction. The reaction followed a different path at 1000 °C and proceeded by sideway thickening of a finite number of magnetite lamellae formed parallel to each other in each grain. Reduced particles showed reentrant surface depressions and cracks, but no porosity. Reaction mechanisms were postulated to relate these structural features to the progress of the reaction. Examination of the reaction steps indicated that the separation of oxygen from solid surfaces was likely to be the rate determining step at both temperatures. This was reflected in rate measurements by a strong dependence on CO pressure while the influence of oxygen activity (as represented by CO2/CO ratio) was of secondary importance at 1000 °C and negligible at 600 °C. A detailed analysis of reaction rates could not be made, however, because the particles were of a wide range of sizes and their structure changed during reduction. formerly Research Student at Imperial College, London, formerly Professor of Metallurgy, Imperial College, London,  相似文献   

3.
The drying and gas reduction of the iron oxides in the red mud of bauxite processing are studied. It is shown that at most 25% of aluminum oxide are fixed by iron oxides in this red mud, and the other 75% are fixed by sodium aluminosilicates. A software package is developed to calculate the gas reduction of iron oxides, including those in mud. Small hematite samples fully transform into magnetite in hydrogen at a temperature below 300°C and a heating rate of 500 K/h, and complete reduction of magnetite to metallic iron takes place below 420°C. The densification of a thin red mud layer weakly affects the character and temperature range of magnetizing calcination, and the rate of reduction to iron decreases approximately twofold and reduction covers a high-temperature range (above 900°C). The substitution of a converted natural gas for hydrogen results in a certain delay in magnetite formation and an increase in the temperature of the end of reaction to 375°C. In the temperature range 450–550°C, the transformation of hematite into magnetite in red mud pellets 1 cm in diameter in a converted natural gas is 30–90 faster than the reduction of hematite to iron in hydrogen. The hematite-magnetite transformation rate in pellets is almost constant in the temperature range under study, and reduction occurs in a diffusion mode. At a temperature of ~500°C, the reaction layer thickness of pellets in a shaft process is calculated to be ~1 m at a converted-gas flow rate of 0.1 m3/(m2 s) and ~2.5 m at a flow rate of 0.25 m3/(m2 s). The specific capacity of 1 m2 of the shaft cross section under these conditions is 240 and 600 t/day, respectively. The use of low-temperature gas reduction processes is promising for the development of an in situ optimum red mud utilization technology.  相似文献   

4.
The kinetics of reduction of hematite powder to magnetite in CO-CO2 gas mixtures at temperatures between 500 and 663 °C have been measured. The reactions are described in terms of a simple nucleation and growth model. The chemical reaction rate constants for the reduction of hematite to magnetite are obtained and the nucleation frequencies of magnetite on hematite are calculated for a range of temperatures and oxygen partial pressures. A possible technique for the improvement of the “reducibility” of dense hematite ores is suggested. Formerly at Metallurgy Department, Strathclyde University, Glasgow, Scotland.  相似文献   

5.
Measurements were made of the rate of equimolar counterdiffusion of hydrogen and water vapor through porous iron formed by the reduction of dense hematite, magnetite, and commercial iron ore pellets with hydrogen. The experiments were conducted at temperatures between 400° and 1000°C and at pressures between 0.1 and 40 atm. It is demonstrated that the structure of the porous iron is primarily a function of reduction temperature and that the diffusion process at the higher reduction temperatures is normal. The effect of gaseous diffusion on the rate of reduction of dense hematite with hydrogen is discussed. It is shown that gaseous diffusion limits the rate at the higher temperatures and pressures.  相似文献   

6.
The transformations that occur in ore grains during solid-phase carbon reduction of the metals from the iron-vanadium concentrates formed upon the beneficiation of the titanomagnetite ores from Southern Ural deposits are studied. Upon heating to 1000°C, the solid solution in titanomagnetite grains decomposes with the formation of magnetite and ilmenite; the reduction of iron begins in the temperature range 1080–1110°C, and the reduction of titanium begins at above 1215°C. The reaction mixture should be held at 1250°C for 45 min to ensure almost complete iron reduction and the minimum degree of titanium reduction. For rapid separation melting, this procedure results in vanadium-containing cast iron (0.43–0.5% V) with <0.15% Ti and a slag with 42–43% titanium oxides.  相似文献   

7.
Morphological changes and phase transition behaviors were investigated for the weak reduction (reduction of ferric iron-to-ferrous state) of preoxidized Panzhihua ilmenite by hydrogen at 873 K to 1073 K (600 °C to 800 °C). Ilmenite was preoxidized for 4 hours at 1023 K and 1173 K (750 °C and 900 °C), respectively, before the reduction. The results revealed that there were two competing reduction routes. At high reduction temperatures, e.g., 1023 K and 1073 K (750 °C and 800 °C), ferric irons from both hematite and pseudobrookite would combine with rutile grains as formed in the preoxidation to form homogeneous ilmenite phase with pores immingled. However, at lower reduction temperatures, e.g., 873 K (600 °C), hematite and pseudobrookite are reduced mainly through direct reduction without the participation of rutile. As a result, the as-reduced ilmenites show great differences in their phase components and microstructure, especially for the Ti species. For ilmenites preoxidized at 1023 K (750 °C), most of the Ti ions present in the needlelike rutile network, but for ilmenites preoxidized at 1173 K (900 °C), Ti distributed in both irregular rutile grains and ilmenite matrix.  相似文献   

8.
Oxidation of stoichiometric iron sulfide was investigated. Rectangular plates of dense FeS were oxidized in an Ar-O2 gas mixture at 1023 to 1123 K. Oxygen partial pressure was varied between 1.01 × 103 and 2.03 × 104 Pa. During the initial five minutes of oxidation, a magnetite layer of about 10 μm in thickness was formed on the surface without the evolution of SO2 gas. Diffusion of iron from the interior of the sulfide to the sulfide/magnetite interface controlled the oxidation rate. Mass transfer through the gaseous boundary layer at the sample surface also affects the oxidation rate at lower oxygen partial pressures. Following this rapid formation of magnetite, the magnetite layer continued to grow for several hours in accordance with the parabolic rate law. Diffusion of iron through the magnetite layer controlled the oxidation rate during this stage. A thin layer of hematite was also formed on the outer surface of magnetite. When the composition of the inner sulfide core reached Fe0.9S, the oxidation proceeded irregularly into the interior of the remaining sulfide. Porous oxide was formed and SO2 gas was evolved. Former Graduate Student  相似文献   

9.
Submicrometer, crystalline hematite (α-Fe2O3) particles were prepared by hydrolysis of organic iron carboxylate solutions using water at 175 °C for 30 minutes. The particle size of hematite was significantly dependent on the liquid-phase stirring speed and the organic compositions. The precipitation rate of hematite from the organic solution followed first-order kinetics. The precipitation rate increased markedly with increasing temperature, and the activation energy for the process was 94.6 kJ mol−1. At 220 °C, the hydrolysis of iron carboxylate solution led to a mixture of hematite and magnetite (Fe3O4). The iron oxides prepared at 175 °C to 220 °C were found to be free from organic contamination by the starting material.  相似文献   

10.
Diffusion induced grain boundary migration (DIGM) was observed to occur in a Ni-48.5 wt pct Cu alloy during oxidation at 450 °C, 500 °C, 600 °C, and 707 °C in air. The DIGM zones are Cu enriched. A Ni depleted zone, consisting of small recrystallized grains, formed in the matrix beneath the metal-oxide interface during oxidation at 600 °C and 707 °C. This process is referred to as oxidation-induced recrystallization (OIR). Growth of the small OIR grains was observed to be associated with Cu-rich DIGM. No Cu-rich DIGM was found in the same alloy when annealed in Ar at 707 °C. Oxidation of this alloy in air resulted in the formation of a duplex oxide: an inner NiO layer and an outer CuO layer. The NiO layer was observed to grow at a faster rate than the CuO layer. The occurrence of Cu-rich DIGM is interpreted in terms of this preferential oxidation of Ni.  相似文献   

11.
Non-topochemical behavior was studied during reduction of porous spheres of hematite by stages through the intermediate oxides and also continuously to iron by CO/CO2 mixtures at temperatures of 600 to 900°C (873 to 1173 K). The behavior became more nearly topochemical as temperature increased. Shrinking occurred during the reduction of hematite to magnetite and of magnetite to wüstite, whereas swelling was observed during the reduction of wiistite to iron. Shrinking was greater, and swelling less, at higher temperatures. The total surface area of the solid decreased with increasing extent of reduction during each of the three stages. A non-topochemical model was developed which satisfies, better than previously proposed models, the reduction data for the single reactions and the three reactions occurring simultaneously. The model provides for variation in particle size and local changes in porosity and effective diffusivity. An empirical “sintering exponent” was introduced to describe changes in reacting surface area.  相似文献   

12.
Low carbon steel was oxidized over the temperature range 1000‐1250°C in O2‐CO2‐H2O‐N2, O2‐H2O‐N2, and O2‐CO2‐N2 gas mixtures. Oxidation times were 12‐120 min. and the scales were 50‐2000 μm thick. The variations of these parameters were chosen to elucidate the phase composition of oxide scales under conditions similar to those of reheating furnaces in hot strip mills, using either thin slab casting or conventional casting and rolling technology. Two types of scales have been observed which are influenced by the furnace atmosphere, oxidation time, and temperature. The first type is a crystalline scale with an irregular outer surface, composed mostly of wustite (FeO), and a negligible amount of magnetite (Fe3O4). The second type is the classical three‐layer scale, composed of wustite (FeO), magnetite (Fe3O4), and hematite (Fe2O3). In general, the experiments showed that an increase in oxidation time decreased the percentage of wustite while the percentages of magnetite and hematite increased. A rise in oxygen concentration in the gas mixture increased the percentages of magnetite and hematite, confirming earlier experimental findings. In water vapour‐free atmospheres O2‐CO2‐N2, the oxide scales had a low percentage of wustite, and high percentage of magnetite and hematite. Carbon dioxide showed a small influence at 1100°C, and a negligible one at 1250°C.  相似文献   

13.
Thermal gravimetric analysis was used to investigate the weight change of Ni/Cu/Co calcines upon heating in an inert as well as hydrogen atmosphere. The two calcines investigated contained approximately 50 wt pct combined of hematite and magnetite in addition to sulfides of Ni, Cu, Co, and Fe. Mass spectrometry was used to analyze the gas species evolved during heating and reduction. The calcine samples are 100 pct less than 100 μm with hematite/magnetite rims around a central sulfide core. When heating the calcines at 10 °C/min in hydrogen, reduction starts at around 400 °C and is nearly complete at about 700 °C with all the reducible oxygen removed. Isothermal reduction tests show that at temperatures from 650 °C to 800 °C, half the oxygen is removed in less than 4 min. The TGA results combined with microscopic analysis show that the reduction followed a uniform internal reduction model. The reduced calcines will quickly get re-oxidized if they are allowed to contact air while they remain hot.  相似文献   

14.
The effect of ball milling under argon and air atmospheres on the reaction behaviour of the mixture of sintered hematite and graphite was investigated. Thermo‐gravimetry / differential thermal analysis (TG‐DTA) was adopted to determine the effect of milling time on the reduction process during heating up under Ar atmosphere. The samples were heated at a constant heating rate of 10 °C/min from room temperature up to 1100 °C and maintained at this temperature for 30 minutes. TGL (thermo‐gravimetry loss) curves showed a decrease of onset temperature of reduction with increase of milling time. XRD patterns of milled samples at room temperature revealed that the peaks of graphite disappeared after 48 hours milling. This represents the transformation of crystalline structure of graphite to the amorphous structure. By increasing the milling time to 72 hours, magnetite peaks appeared in the XRD pattern as a result of reduction of hematite with graphite during milling. However, the amount of magnetite formed during milling process increased as milling proceeded. The powders milled under Ar atmosphere became more active than the powders milled under air and consequently the carbothermic reduction of hematite in powders milled under Ar atmosphere was observed at lower temperatures compared with air‐milled powders. It was observed that the reduction time of hematite in powder mixture was decreased with increase of sintering time of hematite prior to milling.  相似文献   

15.
The reduction of iron oxide fines to wustite between 590 °C and 1000 °C with a CO–CO2 gas mixture of low reducing potential was studied. The reduction kinetics and the dominating reaction mechanism varied with the temperature, extent of reduction, and type of iron oxide. Reduction from hematite to wustite proceeded in two consecutive reaction steps with magnetite as an intermediate oxide. The first reduction step (hematite to magnetite) was fast and controlled by external gas mass transfer independently of the oxide type and the temperature employed. The second reduction step (magnetite to wustite) was the overall reaction-controlling step, and the reduction mechanism varied with the temperature and the oxide type. Moderately porous oxide fines followed the uniform internal reaction for the temperature range studied. For highly porous oxides, the second reduction step was controlled by external gas mass transfer above 700 °C. Below that temperature, a mixed regime that involves external gas mass transfer and limited mixed control, which comprises pore diffusion and chemical reaction, takes place. The rate equations for this mixed control reaction mechanism were developed, and the limited mixed control rate constant (klm) was computed. For denser oxides under uniform internal reaction, the product of the rate constant and pore surface area (k·S) was calculated.  相似文献   

16.
It is considered that the use of prereduced ferrous materials and sources of metallic iron such as direct reduced iron (DRI) or hot briquetted iron (HBI) improves the productivity of the blast furnace (BF). However, oxidation of DRI/HBI can occur in the upper zone of the BF, which may increase the content of the reducing gases but may not decrease the coke rate substantially. The behavior of DRI and HBI was investigated by measuring the rate of oxidation of the materials in CO2 gas in a temperature range of 400 °C to 900 °C. In addition, the microstructure of “as-received” and oxidized materials was examined. The iron oxide phases formed due to oxidation were determined using X-ray diffraction (XRD) and a vibrating sample magnetometer. The results of isothermal experiments indicated that the kinetics of oxidation of metallic iron is slow at 400 °C. In DRI samples, the initial rate is controlled by the limited mixed control of chemical kinetics at the iron/iron oxide interface and pore mass transfer, whereas gas diffusion in pores is the rate governing step during the final stages of oxidation. The oxidation of wustite from iron is found to be faster than the oxidation of the former to magnetite. The structure of DRI after oxidation resembled a “reverse topochemical-oxide on the surface metal in the center” structure at 600 °C to 700 °C. The final iron oxide phase formed in DRI after oxidation was magnetite and not hematite. The oxidation of HBI was limited to the surface of the samples at lower temperatures; at 900 °C, moderate oxidation was observed and a topochemical iron oxide layer was formed.  相似文献   

17.
In order to clarify the phenomenon of nitride formation on the surface of iron, highly polished specimens of well refined and coarsened iron grains have nitrided in flowing H2 + NH3 gas. The morphology and the conditions for formation of Fe3N are clarified; it forms only on the surface of {lll}α or near {lll}α grains and grows in {112}α directions during nitriding treatment at temperatures between 450 and 550°C. Fe16N2 and Fe4N are also formed preferentially on the surfaces of {00l}α and {210}α grains, respectively. It is suggested that these iron surfaces are those satisfying the coherency relationships between nitrides and iron matrices. The morphologies and the formation temperature regions of Fe16N2 and Fe4N on the surface of iron are quite different to those observed in iron. In particular, Fe16N2, which has been generally accepted as metastable in bulk iron below 200°C, can exist even at temperatures from 450 to 500°C when it is formed on the surface of iron.  相似文献   

18.
In order to clarify the phenomenon of nitride formation on the surface of iron, highly polished specimens of well refined and coarsened iron grains have nitrided in flowing H2 + NH3 gas. The morphology and the conditions for formation of Fe3N are clarified; it forms only on the surface of {lll}α or near {lll}α grains and grows in {112}α directions during nitriding treatment at temperatures between 450 and 550°C. Fe16N2 and Fe4N are also formed preferentially on the surfaces of {00l}α and {210}α grains, respectively. It is suggested that these iron surfaces are those satisfying the coherency relationships between nitrides and iron matrices. The morphologies and the formation temperature regions of Fe16N2 and Fe4N on the surface of iron are quite different to those observed in iron. In particular, Fe16N2, which has been generally accepted as metastable in bulk iron below 200°C, can exist even at temperatures from 450 to 500°C when it is formed on the surface of iron.  相似文献   

19.
Reduction kinetics of mixtures of hematite and carbon powders were investigated in the temperature range of 850° to 1087°C. Experiments were carried out under argon atmosphere and the isothermal weight loss of the samples was determined as a function of time. The effects of carbon particle size, hematite/carbon ratio of the mixture, and addition of promotive or inhibitive reagents were also investigated. The results were summarized in the form of fractional reaction vs time plots. A kinetic model developed on the basis of carbon solution-loss reaction as rate-controlling represented the results fairly well. An enthalpy of activation of 72 kcal/per mole was calculated, within the range of 957° to 1087°C. The observed effects of Li2O and FeS on the reduction kinetics are consistent with the influence these reagents are known to exercise on the solution-loss reaction.  相似文献   

20.
Potential transformation of oolitic hematite into magnetite by mixing iron powder using the mechanochemical method has been achieved and discussed in this paper. The phase transition of pure hematite in the preliminary test was identified by X-ray diffractometer (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) techniques. The experimental results have shown that the crystallographic planes of magnetite, (220), (311), (400), and (511) were observed clearly in the Fe/α-Fe2O3 mixture after milling for 15 h, indicating that α-Fe2O3 had been effectively transformed into Fe3O4. The diffraction peaks of magnetite were also observed at d = 0.29605 nm (2θ = 30.163°), 0.25226 nm (2θ = 35.559°), 0.24156 nm (2θ = 37.190°), and 0.20898 nm (2θ = 43.458°) after 13 h milling-time. It suggests that the oolitic hematite is transformed into magnetite successfully by mechanochemical processing. The processing might be applied potentially for the magnetic separation of oolitic hematite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号