首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
In Saccharomyces cerevisiae, the SCR1 gene from Schwanniomyces occidentalis is known to induce ribosomal resistance to cycloheximide (cyh). A 2.8 kb DNA fragment encoding this gene was sequenced. Its EMBL Accession No. is AJ419770. It disclosed a putative tRNA(Asn) (GUU) sequence located downstream of an open reading frame (ORF) of 1641 nucleotides. This ORF was shown to correspond to SCR1. It would encode a highly hydrophobic polypeptide (SCR1) with 12 transmembrane domains. SCR1 is highly similar to a variety of yeast proteins of the multidrug-resistance (MDR) family. However, SCR1 only conferred resistance to cyh but not to benomyl or methotrexate. The cyh-resistance phenotype induced by SCR1 was confirmed in several S. cerevisiae strains that expressed this gene to reside at the ribosomal level. In contrast, a beta-galacosidase-tagged SCR1 was found to be integrated in the endoplasmic reticulum (ER). It is proposed that the ribosomes of yeast cells expressing SCR1 undergo a conformational change during their interaction with the ER, which lowers their affinity for cyh-binding. If so, these findings would disclose a novel ribosomal resistance mechanism.  相似文献   

2.
We have cloned and sequenced the GDS1 gene located on the right arm of chromosome XV of Saccharomyces cerevisiae. The gene codes for a 522 amino acid serine-rich protein with no obvious homology to proteins in the database. GDS1 gene was isolated as the multicopy suppressor of the glycerol-deficient phenotype caused by the nam9-1 mutation in the yeast nuclear gene encoding the mitochondrial ribosomal protein homologous to S4 proteins from various organisms. Disruption-deletion of the GDS1 open reading frame leads to a partial impairment of growth on medium containing glycerol as the carbon source, indicating mitochondrial function of the gene product. The sequence has been deposited in the GenBank data library under Accession Number U18262.  相似文献   

3.
Strains of the budding yeast, Saccharomyces cerevisiae, may contain one or more cytoplasmic viruses with double-stranded RNA (dsRNA) genomes. The killer phenomenon in yeast, in which one cell secretes a killer toxin that is lethal to another cell, is dependent upon the presence of the L-A and M1 dsRNA viruses. The L-A viral genome encodes proteins for the viral capsid, and for synthesis and encapsidation of single-stranded RNA replication cycle intermediates. The M1 virus depends upon the L-A-encoded proteins for its capsid and for the replication of its killer-toxin-encoding genome. A full-length cDNA clone of an M1 genome has been made from a single dsRNA molecule and shown to encode functional killer and killer-immunity functions. The sequence of the clone indicates minor differences from previously published sequences of parts of the M1 genome and of the complete genome of S14 (an internal deletion derivative of M1) but no unreported amino acid variants and no changes in putative secondary structures of the single-stranded RNA. A 118-nucleotide contiguous segment of the M1 genome has not previously been reported; 92 of those nucleotides comprise a segment of A nucleotides in the AU-rich bubble that follows the toxin-encoding reading frame. The GenBank Accession Number for the sequence is U78817; the locus is SCU78817. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Viruses are a major focus of current research efforts because of their detrimental impact on humanity and their ubiquity within the environment. Bacteriophages have long been used to study host–virus interactions within microbes, but it is often forgotten that the single‐celled eukaryote Saccharomyces cerevisiae and related species are infected with double‐stranded RNA viruses, single‐stranded RNA viruses, LTR‐retrotransposons and double‐stranded DNA plasmids. These intracellular nucleic acid elements have some similarities to higher eukaryotic viruses, i.e. yeast retrotransposons have an analogous lifecycle to retroviruses, the particle structure of yeast totiviruses resembles the capsid of reoviruses and segregation of yeast plasmids is analogous to segregation strategies used by viral episomes. The powerful experimental tools available to study the genetics, cell biology and evolution of S. cerevisiae are well suited to further our understanding of how cellular processes are hijacked by eukaryotic viruses, retrotransposons and plasmids. This article has been written to briefly introduce viruses, retrotransposons and plasmids that infect Saccharomyces yeasts, emphasize some important cellular proteins and machineries with which they interact, and suggest the evolutionary consequences of these interactions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Lytic enzymes may have a role in the biological control of fungi. The yeast biocontrol agent, Candida oleophila, is an excellent subject to research this matter. In the present study, CoEXG1, which encodes for a secreted 1,3-beta-glucanase, is the first gene to be cloned from C. oleophila. It was isolated from a partial genomic library and analysed. Its open reading frame and putative promoter were expressed in baker's yeast, Saccharomyces cerevisiae. The reading frame, expressed under the inducible GAL1 promoter, caused an increased secretion of beta-glucanase, and the putative promoter region activated the lacZ reporter gene, to which it was fused. Sequencing analysis revealed that CoEXG1 carries the signature pattern of the 5 glycohydrolases family and has a putative secretion leader, as well as a high degree of identity to yeast 1,3-beta-glucanases. The GenBank Accession No. of CoEXG1 is AF393806.  相似文献   

7.
A transformation system using resistance to the antibiotic cycloheximide as a dominant selectable marker was developed for the pathogenic yeast Cryptococcus neoformans. A 3.5 kb DNA fragment containing a gene encoding the ribosomal protein L41 was cloned from a wild-type strain of C. neoformans which is sensitive to cycloheximide. The open reading frame of the L41 gene contains five introns and encodes a protein of 107 amino acids, which is similar to those reported for other yeasts. The cycloheximide resistance gene to be used as a marker was constructed by replacing a DNA segment of the wild-type L41 gene, which contained the amino acid proline at its 56th position with a homologous DNA segment from a mutant strain resistant to cycloheximide that contained leucine in that position. Cycloheximide resistant transformants were obtained by electroporation on YEPD plates, supplemented with 10-20 microg/ml cycloheximide, at a maximum efficiency of 300 transformants/microg plasmid DNA. While with other genes, most transformants of serotype D in C. neoformans maintain the transforming DNA as episomes, the cycloheximide-resistant transformants were all the result of ectopic genomic integration events.  相似文献   

8.
During the sequencing of the gene GSP2 from Saccharomyces cerevisiae, we have encountered an adjacent open reading frame having strong homology to the 3-phosphoserine aminotransferase (E.C.2.6.1.52) from other organisms. In this report, we present the sequence for this yeast SERC, and evidence that its deletion from the yeast genome leads to serine dependency. The sequence has been deposited in the GenBank data library under Accession Number L20917.  相似文献   

9.
In an adenine-requiring mutant strain of the yeast, Kluyveromyces lactis, the intracellular content of ATP is one-third to one-fifth that in a prototrophic wild strain under growing conditions. The quantitative differences becomes rather small in resting stationary-phase cells. Temporary changes in the two-dimensional protein patterns of mutant ribosomes occur when the ATP content is lowest during the transition phase of growth. The transfer of exponentially growing cells to a synthetic complete medium void of adenine induces the same changes in mutant ribosomes within several hours. Identification of ribosomal proteins by two-dimensional gel electrophoresis indicated all changeable proteins (at least five proteins) to belong to 40S ribosomal subunits. The mutant ribosomes prepared from the transition-phase cells have much lower activity (below 60%) for poly(U)-directed polyphenylalanine synthesis than those in exponentially growing or resting stationary-phase cells. Thus, changes in ribosomal components associated with the differences in ribosome activity in a cell-free system were noted in the adenylate-deprived cells of K. lactis.  相似文献   

10.
The nucleotide sequence of a 2.8 kb fragment containing the ADE2 gene of the osmotolerant yeast Zygosaccharomyces rouxii has been determined. The gene was cloned from a Z. rouxii genomic DNA library by complementation of the Saccharomyces cerevisae ade2 mutant strain. The sequenced DNA fragment contains a 1710 bp open reading frame predicting a protein of 570 amino acids. The deduced amino acid sequence shares a high degree of homology with Ade2p homologues in five other yeast species.  相似文献   

11.
We report the sequence of a 6.3 kb segment of DNA mapping near the end of the right arm of chromosome III of Saccharomyces cerevisiae. The sequence reveals a major open reading frame coding for a putative protein of 1047 amino acids with a striking similarity to the bacterial proteins involved in recognition of mismatched DNA base pairs. This is particularly interesting as the existence of a yeast mismatch repair system similar to that of bacteria has been postulated for some years, but a yeast protein homologous to the bacterial mismatch binding protein had not been identified. The results of a comparison of the putative yeast mismatch binding protein with the bacterial mismatch binding proteins and with two cognate mammalian sequences, support the idea that a similar mismatch repair system may be present also in mammalian cells. The possibility that all of these proteins may have evolved from a common ancestral gene is also discussed.  相似文献   

12.
We have sequenced a region containing 32.5 kb of the right arm of chromosome IV of Saccharomyces cerevisiae. Twenty open reading frames (ORFs) greater than 100 amino acids could be identified in this region. Six ORFs correspond to known yeast genes, including DOA4, UBC5 and UBC3, the gene products of which are involved in ubiquitin metabolism. UBC5 is preceded by the two tRNA genes tRNA-Arg2 and tRNA-Asp. Six genes were discovered with homologies to non-yeast genes or with homologies to other yeast ORFs. One of these could be identified as ribosomal protein gene RPS13. The putative function of eight ORFs remains unclear because comparison to different DNA or protein databases revealed no significant patterns. The sequence from cosmid 2F21 was obtained entirely by a combined subcloning and walking primer strategy, and has been deposited in the EMBL data library under Accession Number X84162.  相似文献   

13.
Genes encoding members of the highly conserved QM family have been identified in eukaryotic organisms from yeast to man. Results of previous studies have suggested roles for QM in control of cell growth and proliferation, perhaps as a tumor suppressor, and in energy metabolism. We identified recessive lethal alleles of the Saccharomyces cerevisiae QM homolog GRC5 that increased GCN4 expression when present in multiple copies. These alleles encode truncated forms of the yeast QM protein Grc5p. Using a functional epitope-tagged GRC5 allele, we localized Grc5p to a 60S fraction that contained the large ribosomal subunit. Two-dimensional gel analysis of highly purified yeast ribosomes indicated that Grc5p corresponds to 60S ribosomal protein L9. This identification is consistent with the predicted physical characteristics of eukaryotic QM proteins, the highly biased codon usage of GRC5, and the presence of putative Rap1p-binding sites in the 5′ sequences of the yeast GRC5 gene. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
We have isolated a gene whose expression enables yeast cells to overcome the inhibition of growth produced by the presence of 2-deoxyglucose. The gene contains an open reading frame of 738 bp that may code for a protein of 27 100 Da. Cells carrying this gene contain high levels of a specific 2-deoxyglucose-6-phosphate phosphatase. The expression of this phosphatase is increased by the presence of 2-deoxyglucose and is constant along the growth curve. The sequence reported here has the GenBank accession number U03107.  相似文献   

15.
The HOG1 gene encodes a MAP kinase that plays an essential role in maintaining water homeostasis in the yeast Saccharomyces cerevisiae. A gene homologous to S. cerevisiae HOG1 has been isolated from a highly salt-tolerant yeast, Debaryomyces hansenii, by phenotypic complementation. DNA sequencing of the clone revealed the presence of an open reading frame encoding a protein 387 amino acids long. The deduced amino acid sequence showed very high similarity with homologous genes identified from S. cerevisiae, Candida albicans and Zygosaccharomyces rouxii. In addition, it has also TGY motif characteristics of hyperosmolarity-activated MAP kinases. The Genbank Accession No. of this sequence is AF185278.  相似文献   

16.
In the framework of the European BIOTECH project for sequencing the Saccharomyces cerevisiae genome, we have determined the nucleotide sequence of the cosmid clone 233 provided by F. Galibert (Rennes Cedex, France). We present here 9743 base pairs of sequence derived from the left arm of chromosome X. This sequence reveals three new open reading frames and includes the published sequence (5′ end and open reading frame) of the gene BCK1/SLK1/SSP31 also identified as ORFAA. Deletion mutants of two earlier unknown open reading frames J0840 and J0904 are viable and the open reading frame J0902 is essential for yeast growth. The sequence has been entered in the EMBL data library under accession number X77923.  相似文献   

17.
Yeast flocculation gene FLO1, located on chromosome I of Saccharomyces cerevisiae, has been cloned previously16. However, it has recently been found that the gene was an in-frame deletion derivative of the chromosomal intact FLO1 gene19. When introduced into non-flocculent industrial strains, including brewer's yeast, the latter gene, FLO1L, containing an open reading frame of 4,611 bp, conferred stronger flocculation than the former gene, FLO1S, containing an open reading frame of 2,586. By chromosomal integration of the ADH1-controlled FLO1L gene, “gene therapy” of the flocculation behaviour of the parent non-flocculent brewer's yeast was successfully achieved.  相似文献   

18.
In 1993, a pilot project for the functional analysis of newly discovered open reading frames, presumably coding for proteins, from yeast chromosome III was launched by the European Community. In the frame of this programme, we have developed a large-scale screening for the identification of gene/protein functions via systematic phenotypic analysis. To this end, some 80 haploid mutant yeast strains were constructed, each carrying a targeted deletion of a single gene obtained by HIS3 or TRP1 transplacement in the W303 background and a panel of some 100 growth conditions was established, ranging from growth substrates, stress to, predominantly, specific inhibitors and drugs acting on various cellular processes. Furthermore, co-segregation of the targeted deletion and the observed phenotype(s) in meiotic products has been verified. The experimental procedure, using microtiter plates for phenotypic analysis of yeast mutants, can be applied on a large scale, either on solid or in liquid media. Since the minimal working unit of one 96-well microtiter plate allows the simultaneous analysis of at least 60 mutant strains, hundreds of strains can be handled in parallel. The high number of monotropic and pleiotropic phenotypes (62%) obtained, together with the acquired practical experience, have shown this approach to be simple, inexpensive and reproducible. It provides a useful tool for the yeast community for the systematic search of biochemical and physiological functions of unknown genes accounting for about a half of the 6000 genes of the complete yeast genome. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
A special advantage has been conferred upon Chlorella cells as tools in biotechnology when viruses (Phycodnaviridae) infecting Chlorella cells were discovered and isolated. The viruses are large icosahedral particles (150-200 nm in diameter), containing a giant, 330-380 kbp long, linear dsDNA genome. Recently, the nucleotide sequence of the 330,740-bp genome of PBCV-1, the prototype virus of Phycodnaviridae, was determined, and up to 702 open reading frames (ORFs) were identified along the genome. The possible genes present include those encoding a variety of enzymes involved in the modification of DNA, RNA, protein and polysaccharides as well as those involved in the metabolism of sugars, amino acids, lipids, nucleotides and nucleosides. Many of these genes are actually expressed during viral infection, with functional enzymes detected in the host cytoplasm or incorporated into the virion. The successful utilization of these viral enzymes as various DNA restriction and modification enzymes (Cvi enzymes) that are now commercially available is well documented. Also noteworthy are virion-associated chitinase and chitosanase activities that have potentially important applications in the recycling of natural resources. The virions of Chlorella viruses contain more than 50 different structural proteins, ranging in size from 10 to 200 kDa. Some of these proteins may be replaced with useful foreign proteins using recombinant DNA technology. The proteins of interest can be recovered easily from the viral particles, and collected by centrifugation after complete lysis of the host Chlorella cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号