共查询到20条相似文献,搜索用时 15 毫秒
1.
以丙烯酸为单体,采用γ射线辐照引发技术制备了超高相对分子质量聚乙烯接枝丙烯酸(UHMWPE- g-AA);利用傅里叶变换红外光谱和差示扫描量热法表征了接枝物的结构和热性能;用化学滴定法测定了接枝物的接枝率;研究了UHMWPE-g-AA对聚酰胺(PA)1010/UHMWPE-g-AA/UHMWPE共混物力学性能的影响。实验表明:接枝物在1716cm~(-1)处有明显的羰基特征吸收峰,说明AA分子确实被接枝到UHMWPE分子链上;接枝率随单体浓度、辐照剂量及辐照时间的增加而增加;加入UHMWPE-g-AA后,UHMWPE与PA1010的相容性得到了改善,PA1010/UHMWPE-g-AA/UHMWPE共混物的缺口冲击强度是PA1010/UHMWPE共混物的1.5倍,达到72J/m。 相似文献
2.
This study covers the preparation of noncrosslinked and crosslinked solvent-cast blend films of ultrahigh molecular weight polyethylene (UHMWPE) and polyisoprene rubber (PIR) and their mechanical, thermal, IR spectroscopic, and morphological characterizations. Solvent-cast films of polymer blends with 0, 10, 20, 35, 50, and 65% PIR composition were prepared by vigorous stirring from a hot decalin solution. The films were crosslinked chemically by using acetophenone as a crosslinking agent under UV radiation. The mechanical properties, measured as ultimate properties and tensile modulus, were found to decrease with PIR content but crosslinking was found to enhance the ultimate strength and tensile modulus. DSC results revealed that melting point of UHMWPE remains almost constant in blends. However, upon crosslinking, the melting point of UHMWPE is depressed almost 5°C. We observed a similar trend in the enthalpy change of the melting of UHMWPE and the variation of percent crystallinity in UHMWPE. Scanning electron microscopy (SEM) studies on the fractured surfaces of the blends showed that the fibrillar texture is present in both crosslinked and noncrosslinked blends. The crosslinking appeared to be through oxygen linkages, which are preferentially conjugated to double bonds, in addition to the possible carbon–carbon crosslinks. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1619–1630, 1998 相似文献
3.
The extent of recrystallization of nascent UHMWPE powder is easily measured by calorimetry. Melting and recrystallization of nascent UHMWPE at 140°C can be suppressed by compression molding. Crystals of UHMWPE prepared from dilute solution show a peak melting temperature of 140°C and exhibit crystallinity up to 75.5% depending on crystallization temperature. Large changes in crystallinity result from drawing single crystal mats or compression-molded films. 相似文献
4.
On heating in DSC, samples of UHMWPE show a single, fairly sharp, melting endotherm which may be increased to a peak temperature of 147°C and 77% crystallinity by annealing at elevated temperatures. An irreversible conversion of nascent to folded crystals, between 134 and 142°C, was observed by heating nascent UHMWPE powder in the calorimeter. In the presence of n-hexatriacontane, the melting endotherm of UHMWPE was depressed and broadened and the conversion of nascent to melt-crystallized polyethylene facilitated on heating. A melt-crystallized mixture of ordinary linear polyethylene (HDPE) and UHMWPE was not resolved on remelting. After annealing this mixture for 12 h at 130°C, HDPE was fractionated and the melting of UHMWPE was sharpened. Crystals of UHMWPE, prepared from dilute solution in xylene, show a single sharp melting endotherm and high crystallinity, but the melting peak is reduced in temperature compared to nascent crystallized powder. 相似文献
5.
The roller drawing of ultrahigh molecular weight polyethylene (UHMW-PE) sheets were carried out in the roller temperature Tr range of 100–140°C. In addition to the roller drawing in the solid state (Tr = 100°C), we attempted to crystallize the molten UHMW-PE sheet under the roller-drawing process (Tr = 100–140°C). The tensile and dynamic viscoelastic properties, the molecular orientation, and the microstructure of the roller-drawn UHMW-PE sheets were investigated. The mechanical properties of UHMW-PE sheets were much improved by crystallization during the roller drawing process at Tr = 140°C. The sheets roller-drawn at Tr = 135 and 140°C exhibited c-axis orientation to the draw direction and (100) alignment in the sheet plane. However, at Tr = 100°C the elastic motion of the amorphous chains induces the twinnings of lattice, which enhances the transition to the (110) alignment in the sheet plane. The dynamic storage modulus below γ-dispersion temperature showed good correlation with crystallinity and orientation functions, while taut tie molecules and thick crystallites play an important role in the storage modulus above γ-dipersion temperature. 相似文献
6.
The molecular weight characterization of partially hydrolyzed polyacrylamide (HPAM) for enhanced oil recovery use is rather difficult because of its ultrahigh molecular weight copolymer and polyelectrolyte behaviors in solution. In this work the effects of aqueous NaCl solution concentration and degree of hydrolysis of polymer on molecular dimension were studied. A simple and precise method for determining molecular weight of HPAM is presented. The molecular weight of HPAM with any degree of hydrolysis can be calculated from the [η]−Mw equation of unhydrolyzed PAM in an H2O system by measuring , of HPAM obtained in aqueous NaCl solutions by extrapolating salt concentration to infinity. Because the values of of HPAM of different degrees of hydrolysis are all equal to the corresponding [η] value of the unhydrolyzed PAM of the same degree of polymerization, the molecular weight of HPAM of any degree of hydrolysis can thus be calculated from the [η] − Mw equation for PAM homopolymer. © 1996 John Wiley & Sons, Inc. 相似文献
7.
The microstructure of ultrahigh molecular weight polyethylene (UHMW-PE) sheets biaxially drawn in the molten state was investigated by means of wide angle X-ray diffraction (WAXD), small angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and electron microscopy. The crystallographic c-axis tended to be oriented in the sheet plane by the biaxial drawing in the molten state. The microstructure of the biaxially drawn UHMW-PE was shown to depend upon molecular weight of UHMW-PE. The biaxially drawn sheet of higher molecular weight (Mv = 2,700,000) showed a fibrous structure, while the lower molecular weight sample (Mv 700,000) had a lamellar structure. The result of DSC measurements suggested that a small number of nucleating extended chain crystals was produced by biaxial melt drawing of the UHMW-PE sheet with higher molecular weight. 相似文献
8.
Highly oriented gel‐spun ultrahigh molecular weight polyethylene (UHMWPE) fibers possess many outstanding properties desirable for composite materials but their adhesion to such matrices as epoxy is poor. This article describes the combined effects of drawing and surface modification on the bulk and surface properties of gel‐cast UHMWPE films emphasizing the effects of etching on both undrawn and drawn films. Drawing the films yields a fibrillar structural hierarchy similar to UHMWPE fibers and a significant increase in orientation, melting point, modulus, and strength. The effects of drawing on bulk properties were more significant than those of etching. The poor adhesion of epoxy to the smooth, fibrillar, and relatively nonpolar drawn film surface improves significantly with oxidization and roughening on etching. The interlaminar shear failure occurred cohesively in the UHMWPE, and thus the interlaminar shear failure strength was greater for the drawn UHMWPE with its greater tensile strength. Nitrogen plasma etching yielded the best results, both removing any low molecular weight surface layer and etching the UHMWPE beneath. Oxygen plasma etching enhanced wetting but was too harsh, causing extensive surface degradation and a significant reduction in mechanical properties. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 405–418, 1999 相似文献
9.
The viscous behavior of the decalin solution of ultrahigh molecular weight polyethylene (UHMEPE) was studied. The influence of the concentration of polymer as well as the temperature was investigated. The flow curve can be described by the power-law model. The dependence of the viscosity on the temperature can be described by the Arrhenius–Frenkel–Eyring equation. The dependence of viscosity on the concentration can also be described by a power-law correlation. The addition of aluminum stearate increased the activation energy of flow of the solution. The viscosity of UHMWPE solution was decreased at lower concentration and increased at higher concentration of UHMWPE. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:289–293, 1997 相似文献
10.
Hongliang Hu Guo Zhang Liguang Xiao Hongjie Wang Qiushi Zhang Zhudi Zhao 《Carbon》2012,50(12):4596-4599
Graphene-coated ultrahigh molecular weight polyethylene (UHMWPE) powders were prepared by a two-step process. The first step is to coat UHMWPE polymers with graphene oxide (GO) sheets. The second step is to reduce GO on the powders to graphene. The two-step process can effectively prevent the aggregation of graphene during reduction. The resultant graphene/UHMWPE mixtures were hot pressed at 200 °C to obtain the composites with a segregated structure. The composites exhibit high electrical conductivity at a very low percolation threshold (0.028 vol.%). Our method provides a new route for preparing electrical conductive graphene/polymer composites with low percolation threshold. 相似文献
11.
The mechanical properties, the crystal orientation, and the microstructure of hot rolled and quench rolled ultrahigh molecular weight polyethylene (UHMW-PE) were investigated. The tensile strength of hot rolled and quench rolled UHMW-PE sheets increased with increasing draw ratio. The crystallographic axes a, b, and c of the rolled sheets tended to be oriented to the normal direction (ND), the traverse direction (TD), and the rolling direction (RD), respectively. The small-angle X-ray scattering patterns with incident X-ray beam parallel to TD suggested the presence of inclined lamellar structure in the RD–ND plane. At the initial stage of rolling, partial breakup of crystallites along the (100) plane was observed. The lamellar structure is deformed by the slippage mechanism along the (100) plane in the chain direction. 相似文献
12.
Sadao Hibi Takahiro Niwa Chi Wang Thein Kyu Jar-Shyong Lin 《Polymer Engineering and Science》1995,35(11):902-910
Wide angle X-ray diffraction pole figure, small angle X-ray scattering (SAXS), and refractive index techniques have been employed to investigate structure and deformation mechanisms in unidirectionally cold-rolled ultrahigh molecular weight polypropylene (UHMWPP) films. All reciprocal lattice vectors (plane normals) of (110), (040), and (130) were found to populate in the film normal (thickness) direction, suggesting that more than one orientation process must be involved in the deformation. SAXS studies on the cold-rolled UHMWPP reveal an oriented lamellar structure with its long axis perpendicular to the rolled direction, however, the lamellae are somewhat tilted. Refractive index and tensile measurements were undertaken to determine the optical and mechanical anisotropy of the cold-rolled UHMWPP films. A similar study was undertaken of unidirectionally rolled conventional polypropylene (PP) for comparison. 相似文献
13.
A new gel‐spinning method was employed to prepare polyacrylonitrile (PAN) fibers from a PAN spinning solution with dimethylsulfoxide and water as a mixed solvent. Aging at 25 °C for 120 min brought the spinning solution to the sol–gel transition and a three‐dimensional gel formed before entering the coagulation bath. The as‐spun fibers from the solution at the sol–gel transition and in the gel state possess a circular cross‐section. Compared with dry‐jet wet‐spun fibers, the gel‐spun fibers have a more compact structure, fewer voids and better mechanical properties after a three‐stage drawing. Moreover, the gel‐spun fibers obtained from the extraction bath have a more homogeneous microstructure and better packed supermolecular structure. The physical properties of the extracted gel‐spun fibers are also better than those of coagulated gel‐spun fibers. Copyright © 2010 Society of Chemical Industry 相似文献
14.
综述了近年来超高分子量聚乙烯(PE?UHMW)改性的最新研究进展,包括采用辐照交联法、填充改性法及共混改性法等进行摩擦性能改性,和采用涂层改性法、等离子体改性法等进行纤维表面性能改性,并讨论了摩擦性能改性与纤维的表面性能改性研究面临的挑战。 相似文献
15.
Ultrahigh molecular weight polyethylene (UHMWPE) reactor powders have been found to be processable in the solid state by the techniques of rolling and roll-drawing. Plates of compacted UHMWPE reactor powder were prepared below their melting points. These plates were then rolled at 124°C. The maximum uniaxial draw ratio (DR) obtained by multiple rolling was about 10. In additional experiments, rolled plates of a DR of 6 were further drawn by tensile stretching at a temperature of 135°C. The specimens prepared by rolling and by the two-stage draw were characterized by tensile measurements, differential scanning calorimetry (DSC), and X-ray diffraction. Results show that, on rolling alone, the tensile modulus and tensile strength achieved were 3 GPa and 42 MPa, respectively, at a DR of 9.6. The rolled plates were effectively drawn further to a total DR of 86. Such highly drawn films exhibited tensile moduli and tensile strength up to 81 and 1.3 GPa, respectively. A high crystallinity and high crystal orientation were also obtained by the two-stage draw. 相似文献
16.
Fatima Eddoumy Frédéric Addiego Houcine Dhieb Jean‐Pierre Célis René Muller Valérie Toniazzo David Ruch 《Polymer International》2013,62(6):867-877
The impact of processing‐induced chain orientation on the sliding wear behaviour of ultrahigh molecular weight polyethylene (UHMWPE) was investigated. The orientation of the molecular network of UHMWPE was done by means of uniaxial tension up to different residual strains. We found that high residual strain levels (higher than 0.45) enabled the sliding dissipated energy of UHMWPE to be decreased in dry conditions. In particular, oriented UHMWPE with a residual strain of 0.85 exhibited, at 500 000 sliding cycles in dry conditions, a decrease in volumetric wear loss by a factor of 3.3 and 19.4 compared with the reference UHMWPE tested in directions parallel and perpendicular to the chain direction, respectively. It is argued that oriented UHMWPE exhibits less adhesion during interfacial wear than the reference material, and hence orientation of UHMWPE bulk may be an alternative treatment to crosslinking for dry sliding conditions. In the case of sliding testing conducted in Ringer's solution, the benefit of the initial chain orientation was quite weak due to a lubrication effect of the solution that markedly limited the effect of chain orientation on the sliding behaviour. 相似文献
17.
Sadao Hibi Takahiro Niwa Jun Mizukami Chi Wang Thein Kyu 《Polymer Engineering and Science》1995,35(11):911-920
The mechanisms of plastic deformation in cold-rolled ultrahigh molecular weight polypropylene (UHMWPP) have been explored by means of wide angle X-ray (WAXD) pole figures. The melt crystallized UHMWPP slabs were rolled unidirectionally in a two-roll mill at 408 K as well as in the cross (transverse) direction. In the unidirectional rolling, all reciprocal lattice vectors of (110), (040), and (130) were found to orient preferentially in the film normal (thickness) direction. The cross-rolling of UHMWPP shows the preferential orientation of the above plane normals in the film thickness direction, but the distribution of poles broadens toward the transverse direction. Such orientation behavior is very different from that of conventional cold-rolled polypropylene. Various orientation mechanisms involving the orientation of lamellae in the film plane, twinning of the (110) plane and slippage mechanisms have been taken into consideration to account for the observed pole figures. A theoretical simulation has been carried out based on an orientation distribution function approach by introducing a slippage angle along the maximum shear stress in conjunction with intralamellar slip around the transverse direction. This model simulation conforms closely with the experimental WAXD pole figures of the (110), (040), and (130) planes. 相似文献
18.
The influence of polymer molecular weight on the mechanical properties of aliphatic polyketones was investigated. The molecular weight varied from 100,000 to 300,000 g mol−1. The crystallinity was found to be independent of polymer molecular weight, as was the glass transition temperature. The yield strength and stiffness of the aliphatic polyketone terpolymers were also found to be independent of molecular weight. The post yield behaviour showed strong dependency on polymer chain length. The draw stress was increased significantly with higher molecular weight material. The impact resistance was increased with molecular weight, resulting in ductile fractures with large energy consumption upon fracture. The brittle-to-ductile transition temperature was lowered with increasing chain length. The difference in material deformation was linked to the higher mechanical connectivity and more stable post yield behaviour of the polymers with an increased molecular weight. 相似文献
19.
Ultrahigh molecular weight polyethylene (UHMWPE) nanocomposites with various organoclay contents were prepared by using the solution intercalation method. Up to a clay loading of 4 wt%, the clay particles were found to be highly dispersed in the UHMWPE matrix without any agglomeration of particles. However, for a clay content above 6 wt% some agglomerated structures form in the polymer matrix. The melting transition temperatures (Tms) and ultimate strengths of the hybrids increase with increasing clay content; the maximum values of these properties were obtained for the hybrid containing 2 wt% of the organoclay. However, the thermal degradation stability and initial modulus are at their maximum values when the amount of organoclay in the hybrid is 4 wt%. The oxygen permeability, coefficient of thermal expansion (CTE), and transmittance at 400 nm were found to monotonically decrease with increases in the clay loading in the range 0 to 10 wt%. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers 相似文献
20.
通过上海化工研究院设计的在线检测装置对超高分子量聚乙烯(UHMWPE)溶胀过程中的温度、黏度进行测试,形成了UHMWPE树脂溶胀工艺的检测方法,对黏均分子量分别为3.261×106(A),3.833×106(B),3.455×106(C)3种不同树脂的溶胀温度、溶胀时间、溶胀比等参数进行了分析。结果表明:A,B,C树脂的溶胀温度分别为121,120,119℃;对溶胀釜加热系统设定统一温度,釜内温度达120℃时,A,B,C树脂的溶胀时间分别为60,30,3 min,溶胀比分别为2.37,2.51,2.31。 相似文献