首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isothermal DSC investigations on pure as well as glass, carbon, and aramid fibre-reinforced poly(phenylene sulfide) (PPS) were carried out in order to obtain informations on the crystallization kinetics, that is, the Avrami exponent, constant, half-time of crystallization, and (final) degree of crystallinity. PPS is a typical representative of semicrystalline polymers with a maximum degree of crystallinity of about 60%. The Avrami exponent reaches values from n = 2.1–2.7 depending on fibre type but independent of crystallization temperature. The system aramid fibre/PPS has a much shorter half-time of crystallization than the other three systems that could be attributed to the high nucleation effect of the aramid fibre surface to PPS. As a consequence of the high nuclei density a transcrystalline zone is built up around the aramid fibre. The relatively low value of the Avrami constant was discussed and a computer simulation attempt was made to understand the measured value quantitatively. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The crystallization and multiple melting behavior of poly(phenylene sulfide) (PPS) and its blends with amorphous thermoplastic bisphenol A polysulfone (PSF) and phenolphthalein poly(ether ketone) (PEK-C), crystalline thermoplastic poly(ether ether ketone) (PEEK), and thermosetting bismaleimide (BMI) resin were investigated by a differential scanning calorimeter (DSC). The addition of PSF and PEK-C was found to have no influence on the crystallization temperature (Tc) and heat of crystallization (ΔHc) of PPS. A significant increase in the value of Tc and the intensity of the Tc peak of PPS was observed and the crystallization of PPS can be accelerated in the presence of the PEEK component. An increase in the Tc of PPS can also be accelerated in the BMI/PPS blend, but was no more significant than that in the PEEK/PPS blend. The Tc of PPS in the PEEK/PPS blends is dependent on the maximum temperature of the heating scans and can be divided into three temperature regions. The addition of a second component has no influence on the formation of a multiple melting peak. The double melting peaks can also be observed when PPS and its blends are crystallized dynamically from the molten state. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 637–644, 1998  相似文献   

3.
Crystallization and melting behaviors of poly(p‐phenylene sulfide) (PPS) in blends with poly(ether sulfone) (PES) prepared by melt‐mixing were investigated by differential scanning calorimetry (DSC). The blends showed two glass transition temperatures corresponding to PPS‐ and PES‐rich phases, which increased with increasing PES content, indicating that PPS and PES have some compatibility. The cold crystallization temperature of the blended PPS was a little higher than that of pure PPS. Also, the heats of crystallization and melting of the blended PPS decreased with increasing PES content, indicating that the degree of crystallinity decreased with an increase of PES content. The isothermal crystallization studies revealed that the crystallization of PPS is accelerated by blending PPS with 10 wt % PES and further addition results in the retardation. The Avrami exponent n was about 4 independent on blend composition. The activation energy of crystallization increased by blending with PES. The equilibrium melting point decreased linearly with increasing PES content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1686–1692, 1999  相似文献   

4.
Thermal properties of Fortron®
  • 1 ®Registered trademark of Hoechst Celanese Corporation.
  • poly(phenylene sulfide) (PPS) polymers of different molecular weights were studied by DSC. Crystallization studies revealed that the ability of these polymers to crystallize decreases with increasing molecular weight. The Avrami equation poorly describes the isothermal crystallization of PPS. Lamellar crystallization was observed for the lowest molecular weight sample. For the other, higher molecular weight polymers the Avrami exponent is always between 2 and 3, suggesting development of distorted spherulites with heterogeneous nucleation. The temperature dependence of the solid and melt heat capacities have been determined. The solid specific heat capacity did not exhibit a molecular weight dependence. The heat capacity increase at the glass transition, Tg, has been calculated to be 28.1 J°C?1 mole?1. The equilibrium melting point of PPS has been estimated to be 348.5°C using the Hoffman–Weeks method. The Tg of PPS increases with molecular weight. The Tg of the highest molecular weight evaluated is 92.5°C. A DMA relaxation peak corresponding to the onset of the phenylene ring rotation occurs at ?92°C. Only the highest molecular weight could be quenched to a completely amorphous state.  相似文献   

    5.
    The glass transition temperature (Tg) of poly(phenylene sulfide) (PPS) with various crystalline fractions has been studied using dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The DSC measurements show that Tg can be observed from the heating curves for the PPS sample with very low crystallinity, and no Tg is observed when the crystallinity is over 8%. DMA indicates that crystallinity has an important effect on molecular chain segment motion of PPS. When the crystallinity, Xc, of PPS is over 38%, there is only one chain segment motion, which mainly results from the crystalline chain vibration; while three different chain segment motions occur for PPS samples with lower crystallinity (Xc < 26%), which are amorphous chain segment motion, crystalline chain segment motion and constrained amorphous chain segment motion. Tg of PPS is mainly caused by the amorphous chain segment motion which is independent of the crystallinity, while the relaxation temperature corresponding to crystalline chain motion shifts to lower temperature as the crystallinity increases. The reduction of the relaxation temperature can be attributed to the disorder‐order transition of amorphous chains for PPS with lower crystallinity. © 2012 Society of Chemical Industry  相似文献   

    6.
    The morphology of nonisothermally crystallized poly(phenylene sulfide) (PPS) and its blend with poly (ether ether ketone) (PEEK) have been observed by polarized optical microscope (POM) equipped with a hot stage. The nonisothermal crystallization behavior of PPS and PEEK/PPS blend has also been investigated by differential scanning calorimetry (DSC). The maximum crystallization temperature for PEEK/PPS blend is about 15°C higher than that of neat PPS, and the crystallization rate, characterized by half crystallization time, of the PEEK/PPS blend is also higher than that of the neat PPS. These results indicate that the PEEK acts as an effective nucleation agent and greatly accelerates the crystallization rate of PPS. The Ozawa model was used to analyze the nonisothermal crystallization kinetics of PPS and its blends. The Avrami exponent values of neat PPS are higher than that of its blend, which shows that the presence of PEEK changed the nucleation type of PPS from homogeneous nucleation to heterogeneous nucleation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

    7.
    The isothermal crystallization kinetics, the morphology, and the melting behavior of melt‐processed composites of poly(phenylene sulfide) (PPS) with a thermotropic liquid crystalline copolyester, Vectra A950, (TLCP) were studied by differential scanning calorimetry (DSC) and optical microscopy. The crystallization behavior of PPS in PPS/TLCP composites is observed to be highly sensitive to Tc and immiscible TLCP content in the composites. The spherulite growth rate, the overall crystallization rate, and the activation energy of PPS in PPS/TLCP composites are markedly depressed by the presence of TLCP. The analysis of the Avrami kinetic parameters (n and k) indicates that blending of TLCP with PPS causes heterogeneous growth process and nucleation mechanisms. At low Tcs, the PPS crystallization rate is faster than that neat PPS with ≤30 wt% TLCP loading whereas at high Tcs it remains almost unchanged. The analysis of the melting behavior of these composites indicates that the stability of PPS crystals and their reorganization is influenced both by the Tcs and the composite compositions. The sizes and the number of spherulites change a great extent with composite composition with a drop of spherulite rapid growth rate, at constant Tc, with increasing content of TLCP in composites. The analysis based on the Lauritzen‐Hoffmann secondary nucleation theory, using present DSC data, indicates that present data predominantly follow a linear growth trend over a present range of Tcs and PPS crystallization in composites still occurs according to regime II kinetics, whereby multiple surface nuclei form on the substrate with multiple nucleation acts commencing before initially formed growth layer is completed. The fold surface free energy of PPS chains in composites is found higher than that of neat PPS, leading to an average higher work of chain folding and is ascribed to a general development of the PPS chain mobility in the composite melt. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

    8.
    The nonisothermal crystallization behavior of poly(phenylene sulfide) (PPS) was studied by means of differential scanning calorimetry (DSC) at various cooling rates. The nonisothermal crystallization data were analyzed by the Ozawa theory. The Avrami exponent n was determined at several constant cooling rates. A notable variable trend of the Avrami exponent with the temperature was found. Within 215–238°C and 243–255°C, the Avrami exponent of PPS increases markedly with the increase of temperature, respectively, while within narrow temperature range from 238°C to 243°C, a sharp decrease of the Avrami exponent can be seen. It has been suggested that the nuclei formation and the geometry of spherulite growth in the nonisothermal crystallization of PPS are strongly affected by the temperature and correlated with the Regime Transition (the regime II→III transition for PPS).  相似文献   

    9.
    The isothermal crystallization of unreinforced poly(phenylene sulfide) (PPS) and PPS filled with glass, carbon, and aramid fibers was studied by differential scanning calorimetry. The Avrami exponent and rate constant are reported, but the crystallization half-times were used to compare the effects of different fibers on the rate of PPS crystallization. The aramid and carbon fibers decreased the crystallization half-time with the aramid fiber having the most pronounced effect. The glass fibers affected the crystallization half-time only at the higher crystallization temperatures. The aramid filled PPS exhibited anomalous degree of crystallinity behavior in that the degree of crystallinity passed through a minimum as a function of temperature. The other systems all exhibited increasing degree of crystallinity with increasing crystallization temperature. Finally, the Avrami plot for the aramid filled PPS is not linear, and the data are fitted better with two linear regions indicating that two types of crystallization processes may be present.  相似文献   

    10.
    The kinetics of crystallization have been studied for a series of novel poly(ether ether sulfide)s based on a biphenyl moiety in the backbone (Mn = 14.3K, 19.1K), referred to as biphenyl sulfide (Tg = 142°C, Tm = 347°C) and phenyl moieties in the backbone (Mn = 8.1K, 19.9K, 34K), referred to as phenyl sulfide (Tg = 100°C, Tm = 243°C). Isothermal melt crystallization kinetics were analyzed based on the Avrami equation. Avrami exponents close to three were obtained for the phenyl sulfides, independent of molecular weight or crystallization temperature, which implies growth of three-dimensional spherulitic superstructures following heterogeneous nucleation. For the biphenyl sulfides, values closer to 2 were obtained for the exponent, also independent of molecular weight or crystallization temperature, which could imply the incomplete development of three-dimensional superstructures following heterogeneous nucleation. Nonisothermal crystallization kinetics were also studied by cooling from the melt; in all cases studied, the Ozawa analysis could not well describe the evolution of crystallinity, probably because of the inapplicability of some of the inherent assumptions in this type of analysis. The data were analyzed using the conventional form of the Avrami equation, which yielded good fits. This semiquantitative method of analysis yields a reduced rate constant that was found to increase with increasing cooling rate and decreasing molecular weight. The results of the isothermal and nonisothermal crystallization studies carried out on the poly(ether ether sulfide)s have been compared wherever possible to the results available for PPS and PEEK.  相似文献   

    11.
    High molecular weight poly(phenylene sulfide ether) (PPSE) was successfully synthesized by reaction of 4,4′‐dihydroxy diphenyl sulfide with 4,4′‐dichloro diphenyl sulfide in N‐methyl‐2‐pyrrolidone (NMP). The influence of polymerization conditions on the intrinsic viscosity and yield of PPSE was investigated and the optimized reaction condition was concluded. Reactions at about 180°C for 6 h along with sodium benzoate as an additive and monomer concentration of 0.588 mol/L NMP were found to produce the highest intrinsic viscosity (0.55 dL/g). Longer reaction time and/or higher temperature reduced the intrinsic viscosity and yield of the resulting product, probably due to side reactions, such as reductive dehalogenation and chemical degradation. X‐ray diffraction indicated that the polymer possessed of orthorhombic cell and had a high crystallinity of 65.8%. The high molecular weight PPSE is a crystalline polymer with Tm of 252°C and Tmc of 224°C. The polymer shows good chemical resistance, but is soluble in organic amide, halo‐hydrocarbon and oxohydrocarbon solvent at a temperature over 150°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

    12.
    Poly(phenylene sulfide) (PPS) is a high-performance super-engineering plastic, but is brittle. In this study, super-tough PPS-based blends were successfully generated by melt blending PPS with poly(ethylene-ran-methacrylate-ran-glycidyl methacrylate) (EGMA) and poly(phenylsulfone) (PPSU) at (56/14/30) PPS/EGMA/PPSU composition, and their toughening mechanisms were investigated in detail. It was demonstrated the interfacial reaction between PPS and EGMA and partial miscibility between PPS and PPSU, both play important synergistic roles on the toughening. The interfacial reaction between PPS and EGMA contributes to the reduction of the PPSU domain size by the increased viscosity of the PPS matrix containing EGMA, and the increased mobility of EGMA chains by negative pressure effect. The partial miscibility between PPS and PPSU contributes to the increased interfacial adhesion between PPS and PPSU, resulting in effective propagation of the impact to the domains, and the increased mobility of not only PPSU chains but also PPS chains, causing a reduction in crystallization.  相似文献   

    13.
    Microcellular foaming of poly(phenylene sulfide)/poly(ether sulfones) (PPS/PES) blends presents a promising approach to produce high‐performance cellular materials with tailored microstructures and enhanced properties. This study investigated the effects of multiphase blend composition and process conditions on the foaming behaviors and final cellular morphology, as well as the dynamic mechanical properties of the solid and microcellular foamed PPS/PES blends. The microcellular materials were prepared via a batch‐foam processing, using the environment‐friendly supercritical CO2 (scCO2) as a blowing agent. The saturation and desorption behaviors of CO2 in PPS/PES blends for various blend ratios (10 : 0, 8 : 2, 6 : 4, 5 : 5, 4 : 6, 2 : 8, and 0 : 10) were also elaborately discussed. The experimental results indicated that the foaming behaviors of PPS/PES blends are closely related to the blend morphology, crystallinity, and the mass‐transfer rate of the CO2 in each polymer phase. The mechanisms for the foaming behaviors of PPS/PES blends have been illustrated by establishing theoretical models. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42634.  相似文献   

    14.
    Poly(phenylene sulfide)-poly(ether sulfone) (PPS–PES) block copolymers were synthesized by polycondensation of chloro-terminated PPS oligomers and hydroxylic-terminated PES oligomers at atmospheric pressure. The structure and compositions of PPS–PES block copolymers were analyzed quantitatively by FTIR spectroscopy. It was found that the contents of PES in copolymers increase with the amount of PES in the added materials; however, the quantities of PES contents in copolymers are lower than its quantities in the added materials. The solubility, crystallization behavior, and thermal properties of PPS-PES block copolymers were studied through a solubility test, X-ray diffraction, DSC, and TGA. It was primarily proved that the copolymers have better solubility, lower crystallinity, and higher glass transition (Tg) than those of PPS. The nonisothermal crystallization kinetics and thermal decomposition kinetics of block copolymers were also studied; furthermore, the crystallization kinetic parameters and the activation energy of thermal decomposition were calculated. © 1996 John Wiley & Sons, Inc.  相似文献   

    15.
    The crystalline morphologies of isothermally and nonisothermally crystallized poly(phenylene sulfide) (PPS) and its blend with polyamide 66 (PA66) were investigated by polarized optical microscopy with a hot stage. The spherulite superstructure of PPS was greatly affected by crystallizable PA66; a Maltese cross was not clear, and the impingement between spherulites disappeared. This could be ascribed to the formation of small crystals of PA66, which filled in the PPS lamellae. The nonisothermal crystallization behavior was also measured by differential scanning calorimetry. The presence of PA66 changed the nonisothermal crystallization process of PPS. The maximum crystallization temperature of the PPS phase in the blend was higher that that of neat PPS, and this indicated that PA66 acted as a nucleus for PPS. Also, the compatibilizer poly(ethylene‐stat‐methacrylate) (EMA) was added to modify the interfacial interplay of the PA66/PPS blend system. The addition of EMA greatly influenced the nonisothermal crystallization process of the PPS phase in the blend system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

    16.
    The nonisothermal crystallization and melting behavior of a poly(phenylene sulfide) (PPS) blend with polyamide 6 (PA6) were investigated by differential scanning calorimetry. The results indicate that the crystallization parameters for PPS become modified to a greater extent than those for PA6 in the blends. The PPS and PA6 crystallize at high temperature as a result of blending. The crystallization temperatures of PPS in its blends are always higher than that of pure PPS and are independent of the melting temperature and the residence time at that temperature. The PPS crystallization peak becomes narrower and the crystallization temperature shifts to a higher temperature, suggesting a faster rate of crystallization as a result of blending with PA6. This enhancement in the nucleation of PPS could be attributed to the possible presence of interfacial interactions between the component polymers to induce heterogeneous nucleation. On the other hand, the increase in the crystallization temperature of PA6 can be attributed to the heterogeneous nucleation provided by the already crystallized PPS. The heterogeneous nucleation induced by interfacial interactions depends on the temperature at which the polymers remain in the molten state and on the storage time at this temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3033–3039, 1999  相似文献   

    17.
    The nonisothermal crystallization kinetics of linear Poly(phenylene sulfide) (PPS) was studied with differential scanning calorimetry. Ozawa theory, Jeziorny model, and Mo equation were applied to describe the crystallization kinetics and to determine the crystallization parameters and mechanism of the linear PPS resin. The crystallization activation energies were also calculated using Kissinger formula and Flynn‐Wall‐Ozawa equation, respectively. According to the Ozawa model, it is found that instantaneous nucleation takes place during crystallization of PPS; the Ozawa exponent m is 3 in initial stage of crystallization; as the crystallization temperature decreases, the value of m reduces, and the growth rate of crystal almost keeps a constant. The Avrami exponent n obtained from Jeziorny model fluctuate around 1.84. Based on the Jeziorny model, the crystallization rate increases with increasing the cooling rate, but it does not change any longer when the cooling rate rise to a certain value. Mo equation also exhibits great advantages in treating the nonisothermal crystallization kinetics of PPS. The activation energy E of nonisothermal crystallization process of PPS is calculated to be −162.73 kJ/mol by the Kissinger formula, and the mean value of E determined by Flynn‐Wall‐Ozawa equation is −152.40 kJ/mol. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

    18.
    The morphology and nonisothermal crystallization behavior of blends made of poly(phenylene sulfide) (PPS), with a amorphous polycarbonate (PC) were studied. The blend is found to be partially miscible by the dynamic mechanical thermal analysis (DMTA) and melt rheological measurements. The nonisothermal crystallization behavior of blend was studied by differential scanning calorimetry (DSC). The results show clearly that the crystallization temperatures of PPS component in the blend decrease with increasing of PC contents. The crystallization kinetics was then analyzed by Avrami, Jeziorny, and Ozawa methods. It can be concluded that the addition of PC decreases the PPS overall crystallization rate because of the higher viscosity of PC and/or partial miscibility of blend, despite of small heterogeneous nucleation effect by the PC phase and/or phase interface. The results of the activation energy obtained by Kissinger method further confirm that the amorphous PC in the partial miscible PPS/PC blend may act as a crystallization inhibitor of PPS. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

    19.
    The thermal behavior of poly(phenylene sulfide) (PPS) blends with poly(ether imide) (PEI) was studied by differential scanning calorimeter (DSC). The crystallization temperature of PPS in blends shifted from 216.8°C to 226.4°C upon addition of 20–70% PEI contents. The heat of crystallization remained unchanged with less than 50% PEI in blends, whereas the heat of fusion decreased with increasing PEI content. The isothermal crystallization indicated that incorporating PEI would accelerate the crystallization rate of PPS. The activation energy of crystallization increased with addition of PEI. The equilibrium melting point of PPS/PEI blends was not changed with compositions.  相似文献   

    20.
    Reinforcing and toughening poly (phenylene sulfide) (PPS) with rigid SiO2 nano-particles was realized simultaneously under the suitable thermodynamic state of PPS, and the key issue about the effect of matrix/filler interaction was also demonstrated. The strong matrix/filler interaction realized by grafting reactive groups onto nanoparticles was beneficial for stress transfer and thus in favor of the increase in tensile strength of PPS. Meanwhile, this interaction provided nanoparticles with certain mobility to move with molecular chains and align along the tensile direction when T > Tg of PPS, thus the nanoparticles could significantly improve the tensile toughness of PPS according to the energy dissipation mechanism. Consequently, the tensile strength and elongation to break values of PPS increased to 59.0 MPa and 112.1 % from the initial values of 48.0 MPa and 78.5 % by adding 1 wt% grafted SiO2 nano-particles. The work provided a promising method to reinforce and toughen rigid-chain polymer simultaneously and prepare high-performance PPS nanocomposites.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号