首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature dependence of critical strain energy release rate (Gc′) and standardized Charpy notched impact strength (CNIS) were measured for a thermoplastic polyurethane (TPUR) reinforced with 30 wt% of short glass fibers (SGF) over a temperature interval ranging from −150°C 23°C (RT) at two strain rates, 70 and 150 s−1, respectively. Fractographic observation of fracture planes was used to qualitatively assess the fracture modes and mechanisms. Adhesion between the reinforcement and the matrix was excellent and the integrity of the fiber‐matrix interfacial contact was relatively insensitive to exposure to hydrolysis during the immersion in boiling water for 100 hours. At temperatures above −30°C, there was a large extent of plastic deformation in the vicinity of crack planes while at temperatures below −50°C, the extent of plastic deformation was substantially reduced. This resulted in a change in the major energy dissipation mechanism and led to a decrease of both CNIS and Gc′ values for SGF/TPUR composites. It was suggested that the plastic deformation of TPUR matrix in the immediate vicinity of glass fibers was the primary source of energy dissipation at temperatures above −30°C, while the friction and fiber pull‐out was the main dissipative process below −50°C. Over the whole temperature interval investigated, greater Gc′ values were obtained at higher strain rate of 150 s−1, without any significant change in the fractographic patterns observed on the fracture planes. The CNIS/Gc′ ratio, used to assess suitability of CNIS for comparison of materials, changed with temperature substantially suggesting that the functional dependences of CNIS and Gc′ on temperature differ substantially. Hence, CNIS data do not provide a reliable base for material selection and for design purposes in this case.  相似文献   

2.
A theoretical model for a short fiber reinforced composite is proposed. The composite is assumed to consist of an aggregate of sub-units, each sub-unit possessing the elastic properties of a reinforced composite in which the fibers are continuous and fully aligned. The elastic constants of a partially oriented composite are then calculated by the Voigt and Reuss averaging procedures, giving upper and lower bounds respectively for the composite modulus. Comparison is made with experimental data for such composites. The measured modulus of glass and carbon fiber composites is found to be given by the Reuss or lower bound, to a good approximation compared with the difference between the bounds, for fiber orientations ranging from almost isotropic to highly aligned.  相似文献   

3.
Nylon‐6,6 was grafted at the surface of glass and plasma‐treated Kevlar fibers for use in nylon–Kevlar thermoplastic composites. Hydroxyl and, in the case of Kevlar, amine end‐groups occur at the fibre surface, either as defects or due to the plasma treatment. These were used as anchor points for nylon‐6,6 step polycondensation. Fibers were subjected to successive dipping in adipoyl chloride/CH2Cl2 and aqueous hexamethylenediamine solutions in order to attach and grow high molecular weight polymer on the fiber surface. Grafted nylon was characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, differential scanning calorimetry and thermogravimetry. It was shown that no backbiting occurred during the first stage of the grafting process and that the polymer quantity increased linearly with number of passes, up to ∼50 passes for plasma‐treated Kevlar and 100 for glass fibers, after which polymer quantity remained constant, within experimental error, which was attributed to the onset of termination reactions. POLYM. COMPOS., 28:278–286, 2007. © 2007 Society of Plastics Engineers  相似文献   

4.
In this work, long basalt fiber reinforced composites were investigated and compared with short basalt fiber reinforced compounds. The results show that long fiber reinforced thermoplastic composites are particularly advantageous in the respects of dynamic mechanical properties and injection molding shrinkage. The fiber orientation in long basalt fiber reinforced products fundamentally differs from short basalt fiber reinforced ones. This results in more isotropic molding shrinkage in case of long basalt fiber reinforced composites. The main advantage of the used long fiber thermoplastic technology is that the special long fiber reinforced pellet can be processed by most conventional injection molding machines. During extrusion compounding the fibers in the compound containing 30 wt% fibers are fragmented to an average length of 0.48 mm (typical of short fiber reinforced thermoplastic compounds), this length decreases further during injection molding to 0.20 mm. Contrarily using long fiber reinforced pellets and cautious injection molding parameters, an average fiber length of 1.8 mm can be achieved with a conventional injection molding machine, which increased the average length/diameter ratio from 14 to 130. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

5.
Twelve polymers and copolymers reinforced with random short glass fibers are used for the study of the strength -composition relationship. Six of these reinforced systems are new and have not been reported elsewhere. The effect of fiber volume fraction on tensile and flexural strengths is related to the Kelly and Tyson equation. For each composition the strengthening factor, F, is calculated and discussed with respect to the structure of the polymer. One factor pertaining to the actual performance of fiber glass, fiber efficiency, K, has been extrapolated for the fiber glass used for this study. The effects of fibers on toughness and the Izod notched impact strength are discussed. It is the impact strength ratio and not the toughness which is used to describe the net result of reinforcement. The deviations between the wet and the dry strengths are used to illustrate the effect of the fiber -matrix interfacial bond. A new parameter, Δθ, is introduced to describe the effect of structure on the fiber -matrix interface. The effect of water at the fiber -matrix interface is further demonstrated through the determination of dielectric constant and dissipation factor of the composite before and after water immersion. The rule of mixtures was found to apply to dry electrical properties of composites.  相似文献   

6.
The purpose of this study is to investigate the influence of different types of fibers on the mechanical properties of hybrid composite materials. Long and short glass fibers (GF) and different types of organic fibers, viz. aramid fiber, DuPont Kevlar‐49 (KF), liquid crystalline polymer (LCP), and vinylon (VF) in hybrid composites, were used to reinforced the high density polyethylene (HDPE) matrix. The long fiber hybrid composites were prepared in a “fiber separating and flying machine,” while the short fiber hybrid composites were prepared in an “elastic extruder.” The total amount of fibers used in both long and short fiber hybrid composites was fixed at 20 vol%. The influence of fiber content, length, and mixing ratio on mechanical properties, such as tensile, bending, Izod and high rate impact strength, as well as viscoelastic propertics in the solid state, was studied. Fracture surfaces of the materials were also examined using a scanning electron microscopy.  相似文献   

7.
The recent growth in the use of polymer composites has resulted in the need for higher productivity manufacturing processes than are currently used in most thermoset composite production. One of the ways to provide increased productivity in composite manufacturing is to use thermoplastic matrix sheet composites. In this investigation the part forming characteristics of several thermopolastic composites were investigated. Glass fiber reinforced composites based on polypropylene, nylon 12, poly(butylene terephthalate), poly(ethylene terephthalate), poly(phenylene sulfide), and poly(etheretherketone) were examined. The processing conditions required for solid-state stamping of these composites were determined. A temperature process window for stamping each of these composites was determined, and found to correlate with the melting and re-crystallization peaks from differential scanning calorimetry (DSC) scans.  相似文献   

8.
We examine the applicability of the conformation tensor to describe the fiber orientation and rheology of moderately concentrated fiber-filled thermoplastics subjected to large deformation flow. To retain computational simplicity, we assume a Newtonian matrix. We present a model that can account for orientation effects, Brownian motion, semiflexibility, and interactions through excluded volume effect, of the fibers. The model predicts a wide variety of rheological effects. We present predictions of steady shear viscosity, primary normal stress and the creep functions, as well as uniaxial elongational viscosity, due to the fibers. We have compared rheological data for 9.54 wt% carbon fibers in polyethylene and 30 wt% glass fibers in polypropylene, with the model predictions. By defining an “effective fiber concentration,” we have been able to correlate the model well with data. With fitting parameters from the steady state viscosity vs. shear rate data, we have been able to predict the steady state primary stress coefficient data as well as the creep data.  相似文献   

9.
Despite demonstrated success in low volume aerospace and defense applications, structural composites remain at the periphery of high volume industries such as construction, automotive, and consumer goods because of long cycle times. Stamping provides a means of making composite sheet products at rates ten to a hundred times faster than any existing continuous fiber processes. However, to make composites stamping a viable process, one must understand how the combination of fabric architecture, tool design, and process conditions interact to produce a part free of wrinkling and tearing. In this paper, the effect of temperature, stamping rate, and boundary constraints on the material deformation is presented. The focus of this study is a co‐mingled glass/polypropylene fabric, in the form of a layer of unidirectional yarns held together by stitches. The results show that temperature variations have the greatest effect on deformation. In addition, a finite element model of parallel strips with linear constraints was shown to successfully simulate the sliding deformation or draw‐in of the stitched unidirectional material.  相似文献   

10.
The tensile and impact performance of intimately mixed (IM) hybrid composites based on glass fiber (GF) and pineapple leaf fiber (PALF) was investigated. The composite was fabricated at constant volume fraction of fiber 0.3 Vf (fiber 0.3 and matrix 0.7). Keeping the volume fraction of matrix a constant (0.7 Vf), we have varied the PALF/GF ratio from 0 to 1. Incorporation of 0.1 volume fraction of GF increases the tensile strength of the hybrid composite by about 28%. The tensile strength showed a further increase when the volume fraction is changed to 0.7 and 0.9 Vf of GF. Intimately mixed hybrid composites exhibited higher impact strength than the individual fiber composites; the composite of PALF/GF ratio 70:30 showed maximum impact strength of 1203 J/m. A positive hybrid effect is observed for impact properties. Scanning electron micrographs of the fractured surfaces were examined to understand the fiber‐matrix adhesion. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
The mechanical properties of short-fiber-reinforced thermoplastic composites depend on the degree of interfacial bond strength between the fibers and polymer matrix. This interfacial bond strength can be increased by appropriate coupling agents. This study shows, for example, that an amino silane coupling agent improves the bond strength of nylon-aluminum fiber composites, but not polycarbonate-aluminum fiber composites. For cases where appropriate coupling agents are not available it is important to maintain as high a fiber aspect ratio as possible in a molded part. This study shows that a single screw compounder does less damage to glass or carbon fibers than a twin screw compounder under similar processing conditions when the polymer is in the form of pellets. When the polymer is supplied as a powder, satisfactory dry blends can be produced and the twin screw compounder does less damage to the fibers. In both cases, however, fibers initially 6 mm long are reduced to an average length less than 0.5 mm. The greatest degree of fiber size retention was observed when extrusion coated fiber pellets were used in the injection molding machine. The relationship between a fiber's tensile strength and the interfacial shear strength between a fiber and matrix yields a critical fiber aspect ratio below which the maximum reinforcing capability of the fibers are not being utilized. For the polymers investigated in this program, the critical aspect ratio for carbon fibers was found to be between 16 and 25 to 1. The polymers investigated include flame-retardant grades of acrylonitrile-butadiene-styrene (ABS) and poly(phenylene oxide)/polystyrene blend, nylon 6/6 and poly(phenylene sulfide).  相似文献   

12.
戴家桐 《国外塑料》2013,31(6):41-43
通过短玻纤增强PA66复合材料二种制造方法的对比,结合短玻纤增强复合材料的增强机理,探寻了加工工艺路线对材料力学性能的影响。结果表明:采用侧喂料短切原丝法工艺可提高材料的力学性能。  相似文献   

13.
Nylon‐6,6 was grafted onto the surface of short glass fibers through the sequential reaction of adipoyl chloride and hexamethylenediamine onto the fiber surface. Grafted and unsized short glass fibers (USGF) were used to prepare composites with nylon‐6,6 via melt blending. The glass fibers were found to act as nucleating agents for the nylon‐6,6 matrix. Grafted glass fiber composites have higher crystallization temperatures than USGF composites, indicating that grafted nylon‐6,6 molecules further increase crystallization rate of composites. Grafted glass fiber composites were also found to have higher tensile strength, tensile modulus, dynamic storage modulus, and melt viscosity than USGF composites. Property enhancement is attributed to improved wetting and interactions between the nylon‐6,6 matrix and the modified surface of glass fibers, which is supported by scanning electron microscopy (SEM) analysis. The glass transition (tan δ) temperatures extracted from dynamic mechanical analysis (DMA) are found to be unchanged for USGF, while in the case of grafted glass fiber, tan δ increases with increasing glass fiber contents. Moreover, the peak values (i.e., intensity) of tan δ are slightly lower for grafted glass fiber composites than for USGF composites, further indicating improved interactions between the grafted glass fibers and nylon‐6,6 matrix. The Halpin‐Tsai and modified Kelly‐Tyson models were used to predict the tensile modulus and tensile strength, respectively.  相似文献   

14.
Twin roll-mill and compression molding machines were used to process the unidirectional ply of short fiber reinforced thermoplastics (FRTP). FRTP laminates were prepared by compression molding of angle plies with the desired stacking sequences.The fiber length and orientation distributions in FRTP took place after processing. Therefore, a statistical distribution function such as WeiBull distribution function was applied to represent the existing fiber length distribution. The orientation distribution in FRTP was characterized by a single parameter exponential function. Elastic moduli of the unidirectional ply were predicted by the Halpin-Tsai equation where the fiber length distribution was introduced to the estimation. The overall elastic moduli of laminates were estimated based on the simulated laminate-plate method. A comparison of measured elastic moduli with theoretical predicted results from unidirectional ply and laminate was discussed in this study.  相似文献   

15.
Glass mat reinforced thermoplastics (GMTs) offer a useful combination of mechanical properties and formability. In principle, these composites may be based on any thermoplastic matrix. In practice, matrix selection is limited because of its impact on the manufacturing and compression molding processes. In this work an isothermal squeezing flow technique is used to determine the apparent biaxial extensional viscosities of polycarbonate, polybutylene terephthalate, and polypropylene-based GMTs. Experimental load-deformation data are interpreted by treating the GMTs as viscous, incompressible Newtonian fluids. Two primary effects are observed: (1) the composites appear to strain harden as they are deformed, and (2) GMT apparent biaxial extensional viscosities correlate with the high rate of deformation shear viscosities of the matrices. A mechanism that explains the second result is proposed.  相似文献   

16.
Iranian Polymer Journal - This study presents the tribological behavior of epoxy matrix composites containing two different fillers. The composites contain fillers with different particle sizes...  相似文献   

17.
短碳纤维增强碳化硅基复合材料的制备   总被引:5,自引:0,他引:5  
短纤维的分散均匀性一直是短纤维复合材料应用受限的主要原因.采用固相球磨分散和熔融渗硅工艺,可得到均匀分散的短碳纤维增强碳化硅基复合材料.并利用金相显微镜见察复合材料微观形貌,测试复合材料的抗弯强度和断后韧性.  相似文献   

18.
Mechanical properties of thermoplastic polyurethane elastomer (TPE) reinforced with short fibers were studied. Two types of fibers were used as the discontinuous phase: an aromatic polyamide (Twaron, diameter: 12 μm) and carbon fiber (FCI 140/90-R33—diameter: 8–10 μm). Because of processing limitations, the maximum length of both fibers, after incorporation in the composites, was reduced to 3 mm. The TPE (continuous phase) was a polyol-polyester type [Elastollan—glass transition of short fiber segments: −42°C (1)]. Both types of composites had fiber concentration of 10, 20, and 30 phr. Component interaction is discussed, as well as the application of a third power polynomial to establish a relationship between the amount of fiber added and stress at break data. Stress-strength, tear resistance, shore A and B hardness, abrasion resistance, and compression set tests were performed. Composites reinforced with aromatic polyamides showed higher values in most of the tests, except in the abrasion resistance test, in which a smaller material loss was observed.  相似文献   

19.
Microstructural characterization of nylon 6/short glass fiber (SGF) and nylon 6/polyacrolonitrile based carbon fibers (PAN‐CFs) of 10 to 40 wt% has been performed by positron lifetime technique (PLT). The positron lifetime parameters viz., o‐Ps lifetime (τ3), o‐Ps intensity (I3), and fractional free volume (Fv) of nylon 6/SGF and nylon 6/PAN‐CF composites are correlated with the mechanical properties viz., tensile strength and Young's modulus. The Fv shows negative deviation with the reinforcement of 10 to 40 wt% of PAN‐CF and show positive deviation in nylon 6/SGF from the linear additivity relation. The negative deviation in nylon 6/PAN‐CF composite suggests the induced molecular packing due to the chemical interaction between the polymeric chains of nylon 6 and PAN‐CF. The positive deviation in nylon 6/SGF composite indicates the formation of interface between the polymeric chains of nylon 6 and SGF. The increased crystallinity of nylon 6/SGF and nylon 6/PAN‐CF composites shows the improved mechanical properties of the composites. The hydrodynamic interaction parameter (h), which shows more negative values in nylon 6/SGF than nylon 6/PAN‐CF composites. However, the extent of chemical interaction in nylon 6/SGF is less compare to nylon 6/PAN‐CF composites. This is evident from Fourier transform infrared spectrometry studies. POLYM. ENG. SCI., 58:1428–1437, 2018. © 2017 Society of Plastics Engineers  相似文献   

20.
An immiscible thermoplastic component was added to a conventional short fiber reinforced polymer to study its effect on the mechanical properties of the composite. Because of the preferential wetting of the fiber reinforcement a continuous network was formed of fibers ‘welded’ together by the minor component within the matrix polymer.Polyethylene (PE) was used as the matrix, polyamide-6 (PA6) as dispersed polymer phase and glass fibers (GF) as reinforcement. The obtained composite retained unusually high values of the elasticity modulus at temperatures above the melting point of the matrix. The upper limit of the ‘applicability’ of the material is determined by the melting point of the minor component. A simple model was derived to describe the mechanical properties of the composite. The model shows a good agreement with the experimental data. The influence of the model parameters on the predictions of the model was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号