首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between the pressure, volume, and temperature (PVT) of poly(vinylidene fluoride) homopolymers (PVDF) and poly(vinylidene fluoride)–hexafluoropropylene (PVDF–HFP) copolymers was determined in the pressure range of 200–1200 bar and in the temperature range of 40°C–230°C. The specific volume was measured for two homopolymers having a molecular weight (Mw) of 160,000–400,000 Da and three copolymers containing between 3 and 11 wt % HFP with a molecular weight range of 320,000–480,000 Da. Differential scanning calorimetry (DSC) was used to simulate the cooling process of the PVT experiments and to determine the crystallization temperature at atmospheric pressure. The obtained results were compared to the transitions observed during the PVT measurements, which were found to be pressure dependent. The results showed that the specific volume of PVDF varies between 0.57 and 0.69 cm3/g at atmospheric pressure, while at high pressure (1200 bar) it varies between 0.55 and 0.64 cm3/g. For the copolymers, the addition of HFP lowered its melting point, while the specific volume did not show a significant change. The TAIT state equation describing the dependence of specific volume on the zero‐pressure volume (V0,T), pressure, and temperature has been used to predict the specific volume of PVDF and PVDF–HFP copolymers. The experimental data was fitted with the state equation by varying the parameters in the equation. The use of the universal constant, C (0.0894), and as a variable did not affect the predictions significantly. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 230–241, 2001  相似文献   

2.
Electrically conducting polyacrylonitrile (PAN)/polypyrrole (PPy) composite films were prepared by electrochemical polymerization of pyrrole in an insulating PAN matrix under various polymerization conditions and their electrical properties were studied. The conductivities of PAN/PPy composite films peeled off from the platinum electrode he lie in the range of 10?2–10?3 s/cm, depending on the preparation conditions: The conductivity increased with the concentrations of the electrolyte and the monomer, but it decreased with the polymerization temperature of pyrrole and the applied potential.  相似文献   

3.
Barium ferrite fibers/poly(vinylidene fluoride) (BaFe12O19/PVDF) composite films were prepared from poly(vinylidene fluoride) (PVDF) resin with different weight percentages (1, 5, 10, 20, 30 wt%) of M-type barium ferrite fibers using N,N-dimethylformamide as a solvent. The structure and morphology of the BaFe12O19/PVDF composite films were characterized by scanning electron microscopy and X-ray diffraction. These results show that BaFe12O19 fibers with diameters around 1 μm and an aspect ratio (length/diameter) of about 50 are well dispersed in the PVDF resin and the dispersed fibers result in a structural change of the PVDF from α to β phase. Measurements of the magnetization of the composite films by using a vibrating sample magnetometer show that these BaFe12O19/PVDF composite films possess a hard magnetic characteristic. The specific saturation magnetization and dielectric loss increase with BaFe12O19 content, whereas the coercivity and dielectric constant of the composite films are less affected. These BaFe12O19/PVDF composite films can combine magnetic, dielectric, and mechanical properties of the BaFe12O19 and PVDF phases.  相似文献   

4.
Specimens of poly(vinylidene fluoride) (PVDF)–poly(methyl methacrylate) (PMMA)–polystyrene (PS) polyblends with different weight percentage ratios of the three polymers were prepared with the solution cast technique. The effect of γ irradiation on the Vicker's microhardness was studied. Among the three pure polymers, PVDF, PMMA, and PS, the γ irradiation imparted crosslinking in PVDF, thereby causing radiational hardening. In the cases of PMMA and PS, the effect of irradiation exhibited a predominance of both the scissioning and crosslinking processes in different ranges of doses. Moreover, at a dose of 5 Mrad, in both PMMA and PS, maximum radiational crosslinking was observed. The effect of γ irradiation seemed to stabilize beyond 15 Mrad in PVDF and beyond 20 Mrad in PMMA and PS. Microhardness measurements on ternary blends of PVDF, PMMA, and PS revealed that the blend with low contents of PMMA, that is, up to 5 wt %, yielded softening, whereas increasing the content of PMMA beyond 5 wt % produced a hardened material because of radiational crosslinking, and a higher content of PMMA in the blend facilitated this crosslinking. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3107–3111, 2004  相似文献   

5.
Considering the complementary properties of poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride‐trifluoroethylene) [P(VDF‐TrFE)], it appears that their blends have the potential to be promising candidates for device applications. We report the evolution of morphology, ferroelectric, and mechanical properties (modulus and hardness) and their dependence on preparation temperature for PVDF–P(VDF‐TrFE) blends. From ferroelectric hysteresis measurements it was found that P(VDF‐TrFE) rich blends treated at higher temperature show significant values of remanent polarization. Remanent polarization values show a fourfold increase in these P(VDF‐TrFE) rich blends treated at higher temperature. Interestingly, blends prepared from high temperature showed greater value of remanent polarization even though they were found to consist of smaller amount of electroactive phase as compared to their low temperature treated counterpart. Nanoindentation experiments revealed that high temperature treatment improves the modulus of blends by at least 100%. This report attempts to tie these findings to the morphology and crystallinity of these blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45955.  相似文献   

6.
Morphological characteristics of poly(vinylidene fluoride) (PVDF) films, filled with mass fractions (w ≤ 20%) of Barium Chloride (BaCl2), were investigated by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) absorption spectra and differential scanning calorimetry (DSC) measurements. The dielectric properties of films were measured from 250 Hz to 1 MHz range between 100 and 400 K as a function of frequency and temperature. Spectroscopic data revealed that the filled and unfilled films include α‐, β‐, and γ‐crystalline phases. By a 20% filling, 73% increase was obtained in the total degree of crystallinity. Since the BaCl2 formed fluorine bridges over the chain segments on the crystal lamellar surface, the γ‐crystalline phase decreased, whereas the total degree of crystallinity increased. Dielectric measurements showed that maximum of the dielectric loss factor belonging to β‐relaxation transition decreased linearly with filling level. The filling process did not have any effect on the real dielectric constant till α‐relaxation transition region. However, in the α‐relaxation transition region, it was determined that the real dielectric constant increased linearly with filling level. POLYM. COMPOS., 31:1782–1789, 2010. © 2010 Society of Plastics Engineers.  相似文献   

7.
Electron‐beam irradiated and styrene‐grafted poly(vinylidene fluoride) films are sulfonated with chlorosulfonic acid in dichloroethane under various conditions. The impact of the reaction time, the concentration of the sulfonating agent, and the reaction temperature on the properties of the sulfonated film is examined. Sulfonation proceeds via a reaction front mechanism. Sulfonation of surface‐grafted films is incomplete at room temperature. The number of side reactions taking place appears to be linearly dependent on the concentration of the sulfonation solution. Dimensional changes suggest that sulfone crosslinking is significant at higher concentrations. This reduces the ion‐exchange capacity and proton conductivity of the films but increases the resistance to oxidation in a H2O2 solution. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1572–1580, 2001  相似文献   

8.
Nanocomposites of poly(vinylidene fluoride) (PVDF) with chemically reduced graphene nanosheets (GNs) were prepared by melt mixing method and their structure and morphology characterized by SEM analysis. The addition of GNs in the PVDF matrix resulted in changes of the crystallization and melting behaviors. Furthermore, increasing GNs content led to improved thermal stability of the PVDF nanocomposites in air and nitrogen, as well as significant increase in tensile and flexural properties. The nanocomposites' rheological behavior is also affected by the GNs' content. Using oscillatory rheology to monitor the GNs' dispersion, it was found that as the GNs loading increase, the Newtonian behavior disappears at low frequency. This suggests a viscoelastic behavior transition from liquid‐like to solid‐like, with greater GNs content and more homogeneous dispersion resulting in a stronger solid‐like and nonterminal behavior. By using the melt mixing method to disperse GNs, the properties of PVDF are enhanced due to the better dispersion and distribution of GNs throughout the matrix. This improvement could broaden the applications for PVDF nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Free‐standing flexible composite films of nanocrystalline cadmium sulfide‐impregnated poly(vinylidene fluoride) (nano‐CdS/PVDF) were prepared using a sol–gel technique. The effect of CdS loading, in the PVDF host matrix, on the dielectric properties was studied. An increase in dielectric constant (more than 10 times) was observed in the films when poled under an electric field. The composite films were also characterized using microstructural, Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy measurements. © 2015 Society of Chemical Industry  相似文献   

10.
The application of the membrane method for removing dissolved oxygen (DO) from water on the laboratory scale was studied. Flat mixed matrix membranes were composed of poly(vinylidene fluoride) (PVDF) and hydrophobic nanosilica particles, which were used to improve the DO removal process. The SiO2 particles were modified by a silane coupling agent and examined by Fourier transform infrared spectroscopy. It was shown that the surface of the SiO2 particles was bonded to hydrophobic long‐chain alkane groups through chemical bonding. The effects of adding SiO2 particles on the membrane properties and morphology were examined. The results show that the porosity and pore size of the membrane were affected by the introduction of SiO2 particles, and the cross‐sectional morphology of the PVDF composite membranes changed from fingerlike macrovoids to a spongelike structure. The membrane performance of DO removal was evaluated through the membrane unit by a vacuum degassing process. It was found that the SiO2/PVDF hybrid membranes effectively improved the oxygen removal efficiency compared with the original PVDF membranes. The maximum permeation flux was obtained when the loading amount was 2.5 wt %. The effect of the downstream vacuum level was also investigated. The experimental results show that the SiO2/PVDF hybrid membranes had superior performances and could be an alternative membrane for removing DO from water. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40430.  相似文献   

11.
The radiation initiated grafting of N-vinylpyrrolidone (NVP) onto poly(tetrafluoroethylene–hexafluoropropylene–vinylidene fluoride) (TFB) films has been investigated using a direct radiation technique. Different solvents were used for diluting the monomer, and it was found that dioxane is suitable for this grafting system. The influence of other grafting parameters, such as inhibitor, monomer concentration and dose rate, on the rate and yield of grafting was studied. The dependence of the grafting rate on the monomer concentration was found to be of the 1.1 order. Some physicochemical properties, such as swelling, thermal behaviour, mechanical and electrical conductivity, were investigated. A study was made to gain a better understanding of the observed water uptake using IR spectroscopy and scanning electron microscope (SEM) analysis. The possibility of some practical uses, e.g. removal of heavy metals from solution by grafted membranes was investigated. © 1999 Society of Chemical Industry  相似文献   

12.
This study presents an investigation of the effect of the different crystalline phases of each blend component on miscibility when blending poly(vinylidene fluoride) (PVDF) and its copolymer poly[(vinylidene fluoride)‐ran‐trifluorethylene] [P(VDF–TrFE)] containing 72 mol % of VDF. It was found that, when both components crystallized in their ferroelectric phase, the PVDF showed a strong effect on the crystallinity and phase‐transition temperature of the copolymer, indicating partial miscibility in the crystalline state. On the other hand, immiscibility was observed when both components, after melting, were crystallized in their paraelectric phase. In this case, however, a decrease in crystallization temperatures suggested a strong interaction between monomers in the liquid state. Blend morphologies indicated that, in spite of the lack of miscibility in the crystalline state, there is at least miscibility between PVDF and P(VDF–TrFE) in the liquid state, and that a very intimate mixture of the two phases on the lamellar level can be maintained upon crystallization. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1362–1369, 2002  相似文献   

13.
Abstract

The current study examines the tribological performance of poly(vinylidene fluoride) (PVDF) and carbon fibre reinforced poly(vinylidene fluoride) (CF/PVDF) under dry sliding condition. Different contents of carbon fibres (CFs) were employed as reinforcement. All filled and unfilled polyimide composites were tested against CGr15 ball and representative testing was performed. The effects of CF content on tribological properties of the composites were investigated. The worn surface morphologies of neat PVDF and its composites were examined by scanning electron microscopy and the wear mechanisms were discussed. Moreover, all filled PVDFs have superior tribological characteristics to unfilled PVDFs. The optimum wear reduction was obtained when the content of CF is 20 vol.-%.  相似文献   

14.
Electrically conducting arachidic acid/polypyrrole (PPy) composite films were prepared by exposing the arachidic acid LB films containing ferric chloride to pyrrole vapor. The optimum conditions to deposit matrix LB film were the subphase temperature of 23–25°C, pH of 6.0 and ferric chloride concentration of 5.0 × 10−5 M. The formation of PPy in the arachidic acid matrix LB films was confirmed by UV-visible spectra, FTIR spectra, and scanning electron micrographs. The average thickness of the composite LB films prepared at 0°C was 1525 Å. The composite films prepared at lower temperatures have more uniform surface and exhibit higher electrical conductivity than the films prepared at higher temperatures do. The in-plain conductivity and the transverse conductivity of the composite film were 10−3−10−2 S/cm and 10−6S/cm, respectively, and, thus, the conductivity anisotropy was about 103 © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The miscibility, crystallization kinetics and crystalline morphology of a new system of poly(vinylidene fluoride)/poly(?‐caprolactone)‐block‐poly(dimethylsiloxane)‐block‐poly(?‐caprolactone) (PVDF/PCL‐b‐PDMS‐b‐PCL) triblock copolymer were investigated by a variety of techniques. The miscibility and phase behaviour of PVDF/PCL‐b‐PDMS‐b‐PCL were studied by determination of the melting point temperature, crystallization kinetics and Fourier transform infrared (FTIR) mapping. Chemical imaging was used as a new technique to characterize the interaction of polymer blends in crystalline morphology. The results demonstrate the existence of characteristic peaks of both PVDF and PCL in the chosen crystalline area. The crystalline structures of PVDF were affected by the PCL‐b‐PDMS‐b‐PCL triblock copolymer and facilitate the formation of the β polymorph which was illustrated by FTIR analysis. The β crystal phase fraction increases significantly on increasing the composition of the PCL‐b‐PDMS‐b‐PCL triblock copolymer. In addition, confined crystallization of PCL within PVDF inter‐lamellar and/or inter‐fibrillar regions was confirmed through polarizing optical microscopy, wide‐angle X‐ray diffraction and small‐angle X‐ray scattering analysis. © 2019 Society of Chemical Industry  相似文献   

16.
The composite latex particles of poly(methyl methacrylate)–poly(methacrylic acid) [poly(MMA–MAA)] were synthesized through either soapless seeded emulsion polymerization or a soapless emulsion copolymerization technique. The reaction kinetics, morphology, and size of latex particles, composition, glass transition temperature (Tg), and molecular weight of polymer products were studied under different experimental conditions. Moreover, this work also focused on the humidity‐sensitive properties of the polymer films fabricated by melting under the temperature of 200°C and followed by chemical modification with aqueous solution of NaOH. It is confirmed that there exists both an optimum ratio of hydrophilic to hydrophobic monomers and the initial structure of the latex particle to provide the humidity‐sensitive polyelectrolyte film with excellent water resistivity and good sensitivity to humidity. Besides, little hysteresis and quick response were observed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 47–57, 1999  相似文献   

17.
Poly(vinylidene fluoride) (PVDF), poly(vinyl fluoride) (PVF), and their blends were prepared by solution casting, followed by quenching in ice water after melting to obtain an α-crystalline phase. The films were drawn by solid state extrusion at two different drawing temperatures, 50°C and 110°C. The crystalline phases were analyzed by DSC and FTIR. In the undrawn films, the content of β-crystalline phase in the blend of PVDF/PVF 88.5/11.5 was higher than in the PVDF homopolymer, but it was lower than in the PVDF film with a draw ratio higher than 4. The α-crystalline phase in PVDF/PVF blends was mostly transformed into the β-crystalline phase beyond a draw ratio of 4, regardless of the draw temperature and PVF content. The α-crystalline phase of PVDF systematically transformed into the β-crystalline phase with increasing draw ratio. The crystallinity of PVDF/PVF blend films drawn at 110°C was higher than those drawn at 50°C. In the drawn blend films, characteristic IR bands of the α form were shifted to those of the β form and completely changed into those of β form at draw ratio of 4, regardless of the draw temperature and PVF content.  相似文献   

18.
PVDF sheets, rapidly quenched, were (1) two-step transversely stretched at various temperatures and (2) stretched at various temperatures, rolled at room temperature and then annealed. The orientation patterns of the β-form crystal (which contains the polar b-axis) in these films were analysed on the basis of X-ray diffraction photographs taken with flat and cylindrical cameras. In the case of (1), when both of the two-step transversely stretching temperatures were below 100°C, a doubly oriented film with the plar b-axis oriented parallel to the film surface was obtained. In the case of (2), when the stretching temperature was below 100°C, the sheets then rolled without annealing, another doubly oriented film with the polar b-axis preferentially oriented at 30° to the film surface was obtained. On the other hand, when these films were annealed above 100°C, or the stretching temperatures were above 100°C, orientation patterns in which the polar b-axis was partially rotated through 60° were obtained. The orientation mechanisms of these films are discussed using the measurements of the lattice spacings of the β-form crystal.  相似文献   

19.
The dehydrofluorination of poly(vinylidene fluoride) (PVDF) powder and films was studied using several kinds of base solution. Especially the reactivity of 1,8-diazabicyclo[5.4.0]-7-undecene (DBU) in ethanol, KOH in 2-propanol and aqueous NaOH solution with tetrabutylammonium bromide was investigated by the change in infrared (IR) and ultraviolet-visible (UV-VI) absorptions of PVDF films. The elimination reactions by DBU or KOH were considered to be accompanied by substitution reaction. The electrical conductivity of dehydrofluorinated PVDF films increased markedly by doping with iodine, and the activation energies of conduction were found to be between 0.4 and 0.5 eV. When a drawn PVDF film was dehydrofluorinated and doped with iodine, anisotropy in conductivity was observed.  相似文献   

20.
Chlorinated poly(vinylidene fluoride) (PVF2) was prepared by introducing chlorine gas into a CCI4 suspension of PVF2 at reflux temperature. Polymer crystallinity and softening point decrease, while solubility and adhesion increase with the degree of chlorination. In contrast to PVF2, the chlorinated polymer is soluble in low-boiling common organic solvents, such as acetone, methyl ethyl ketone, and 1,2-dimethoxyethane. Chlorinated PVF2 is resistant to dehydrochlorination and is thermally more stable than PVF, chlorinated PVF, PVC, or chlorinated PVC. Chlorinated PVF2 coatings on wood, prepared by solution casting at room temperature, show outstanding weathering resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号