首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Shewhart X chart (or X chart) is widely used to monitor the mean of a quality characteristic x. This chart decides the process status based on the magnitude of the sample mean x and is effective for detecting large mean shifts. The synthetic chart is also a Shewhart type chart for monitoring the process mean, but it utilises the information about the time interval between two nonconforming samples. Here a sample is nonconforming if its x value falls beyond the predetermined warning limits. Unlike the X chart, the synthetic chart is more powerful to detect small shifts. The applications of the X and synthetic charts cover a wide variety of manufacturing processes and production lines, e.g., the monitoring of the mean values of the inside diameter of a piston-ring, the viscosity of aircraft paint, the resistivity of silicon wafers. This article proposes a combined scheme, the Syn-X chart, that comprises a synthetic chart and an X chart. The results of the performance studies show that the Syn-X chart always outperforms the individual X chart and synthetic chart under different conditions. It is more effective than the X chart and synthetic chart by 47% and 20%, respectively, over the wide range of mean shift values in different experiment runs.  相似文献   

2.
Exponentially weighted moving average (EWMA) control charts have been widely recognized as a potentially powerful process monitoring tool of the statistical process control because of their excellent speed in detecting small to moderate shifts in the process parameters. Recently, new EWMA and synthetic control charts have been proposed based on the best linear unbiased estimator of the scale parameter using ordered ranked set sampling (ORSS) scheme, named EWMA‐ORSS and synthetic‐ORSS charts, respectively. In this paper, we extend the work and propose a new synthetic EWMA (SynEWMA) control chart for monitoring the process dispersion using ORSS, named SynEWMA‐ORSS chart. The SynEWMA‐ORSS chart is an integration of the EWMA‐ORSS chart and the conforming run length chart. Extensive Monte Carlo simulations are used to estimate the run length performances of the proposed control chart. A comprehensive comparison of the run length performances of the proposed and the existing powerful control charts reveals that the SynEWMA‐ORSS chart outperforms the synthetic‐R, synthetic‐S, synthetic‐D, synthetic‐ORSS, CUSUM‐R, CUSUM‐S, CUSUM‐ln S2, EWMA‐ln S2 and EWMA‐ORSS charts when detecting small shifts in the process dispersion. A similar trend is observed when the proposed control chart is constructed under imperfect rankings. An application to a real data is also provided to demonstrate the implementation and application of the proposed control chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The cumulative count of a conforming (CCC) chart is used to monitor high‐quality processes and is based on the number of items inspected until observing r non‐conforming ones. This charting technique is known as a CCC‐r chart. The function of the CCC‐r chart is the sensitive detection of an upward shift in the fraction defectives of the process, p. As r gets larger, the CCC‐r chart becomes more sensitive to small changes of upward shift in p. However, since many observations are required to obtain a plotting point on the chart, the cost is fairly high. For this trade‐off problem it is necessary to determine the optimal number of non‐conforming items observed before a point is plotted, the sampling (inspection) interval, and the lower control limit for the chart. In this paper a simplified optimal design method is proposed. For illustrative purposes, some numerical results for the optimal design parameter values are provided. The expected profits per cycle obtained using the proposed optimal design method are compared with those obtained using other misspecified parameter values. The effects of changing these parameters on the profit function are shown graphically. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
A continuous sampling plan, CSP‐SUM, is proposed based on the use of sums of run‐lengths of conforming items for deciding when to switch between the phases of sampling inspection and 100% inspection. The conventional measures of performance of CSPs such as the average outgoing quality, average fraction inspected, and the proportion passed under sampling inspection are evaluated for CSP‐SUM. Using these and other measures, comparisons with some standard CSPs are provided and indicate better performance for CSP‐SUM. Comparisons are also made with a recently‐proposed CSP utilizing CUSUMs, termed CSP‐CUSUM, and indicate that the performance of CSP‐SUM can be close to that of CSP‐CUSUM. A table is provided to aid the choice of parameters for the operation of CSP‐SUM. It is recommended that a conforming run‐length control chart be maintained in parallel with CSP‐SUM to detect significant upward shifts in the fraction defective of the process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Control charts are the most popular tool of statistical process control for monitoring variety of processes. The detection ability of these control charts can be improved by introducing various transformations. In this study, we have enhanced the performance of CUSUM charts by introducing a link relative variable transformation technique. Link relative variable converts the original process variable in a form which is relative to its mean. So, the link relative represents the relative positioning of the observations. Average run length (ARL ) is used to compare our technique with the previous studies. The comparison shows the overall good detection performance of our scheme for a span of shifts in the mean. A real‐world example from the electrical engineering process is also included to demonstrate the application of proposed control chart.  相似文献   

6.
Quality control charts have proven to be very effective in detecting out‐of‐control states. When a signal is detected a search begins to identify and eliminate the source(s) of the signal. A critical issue that keeps the mind of the process engineer busy at this point is determining the time when the process first changed. Knowing when the process first changed can assist process engineers to focus efforts effectively on eliminating the source(s) of the signal. The time when a change in the process takes place is referred to as the change point. This paper provides an estimator for a period of time in which a step change in the process non‐conformity proportion in high‐yield processes occurs. In such processes, the number of items until the occurrence of the first non‐conforming item can be modeled by a geometric distribution. The performance of the proposed model is investigated through several numerical examples. The results indicate that the proposed estimator provides a reasonable estimate for the period when the step change occurred at the process non‐conformity level. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are potentially powerful process monitoring tool because of their excellent speed in detecting small to moderate shifts in the process parameters. These control charts can be further improved by integrating them with the conforming run length control chart, resulting in the synthetic CUSUM (SynCUSUM) and synthetic EWMA (SynEWMA) charts. In this paper, we enhance the detection abilities of the SynCUSUM and SynEWMA charts using the auxiliary information. With suitable assumptions, the proposed control charts encompass the existing SynCUSUM, SynEWMA, CUSUM, and EWMA charts. Extensive Monte Carlo simulations are used to study the run length profiles of the proposed control charts. It turns out that the proposed near‐optimal control charts with the auxiliary information perform uniformly and substantially better than the existing near‐optimal SynCUSUM, SynEWMA, CUSUM, and EWMA charts. The proposed and existing control charts are also illustrated with the help of an example. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
A statistical quality control chart is widely recognized as a potentially powerful tool that is frequently used in many manufacturing and service industries to monitor the quality of the product or manufacturing processes. In this paper, we propose new synthetic control charts for monitoring the process mean and the process dispersion. The proposed synthetic charts are based on ranked set sampling (RSS), median RSS (MRSS), and ordered RSS (ORSS) schemes, named synthetic‐RSS, synthetic‐MRSS, and synthetic‐ORSS charts, respectively. Average run lengths are used to evaluate the performances of the control charts. It is found that the synthetic‐RSS and synthetic‐MRSS mean charts perform uniformly better than the Shewhart mean chart based on simple random sampling (Shewhart‐SRS), synthetic‐SRS, double sampling‐SRS, Shewhart‐RSS, and Shewhart‐MRSS mean charts. The proposed synthetic charts generally outperform the exponentially weighted moving average (EWMA) chart based on SRS in the detection of large mean shifts. We also compare the performance of the synthetic‐ORSS dispersion chart with the existing powerful dispersion charts. It turns out that the synthetic‐ORSS chart also performs uniformly better than the Shewhart‐R, Shewhart‐S, synthetic‐R, synthetic‐S, synthetic‐D, cumulative sum (CUSUM) ln S2, CUSUM‐R, CUSUM‐S, EWMA‐ln S2, and change point CUSUM charts for detecting increases in the process dispersion. A similar trend is observed when the proposed synthetic charts are constructed under imperfect RSS schemes. Illustrative examples are used to demonstrate the implementation of the proposed synthetic charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The geometric control chart has been shown to be more effective than p and np‐charts for monitoring the proportion of nonconforming items, especially for high‐quality Bernoulli processes. When implementing a geometric control chart, the in‐control proportion nonconforming is typically unknown and must be estimated. In this article, we used the standard deviation of the average run length (SDARL) and the standard deviation of the average number of inspected items to signal, SDARL*, to show that much larger phase I sample sizes are needed in practice than implied by previous research. The SDARL (or SDARL*) was used because practitioners would estimate the control limits based on different phase I samples. Thus, there would be practitioner‐to‐practitioner variability in the in‐control ARL (or ARL*). In addition, we recommend a Bayes estimator for the in‐control proportion nonconforming to take advantage of practitioners' knowledge and to avoid estimation problems when no nonconforming items are observed in the phase I sample. If the in‐control proportion nonconforming is low, then the required phase I sample size may be prohibitively large. In this case, we recommend an approach to identify a more informative continuous variable to monitor. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
11.
We present a method to design control charts such that in‐control and out‐of‐control run lengths are guaranteed with prespecified probabilities. We call this method the percentile‐based approach to control chart design. This method is an improvement over the classical and popular statistical design approach employing constraints on in‐control and out‐of‐control average run lengths since we can ensure with prespecified probability that the actual in‐control run length exceeds a desired magnitude. Similarly, we can ensure that the out‐of‐control run length is less than a desired magnitude with prespecified probability. Some numerical examples illustrate the efficacy of this design method.  相似文献   

12.
A control chart is a simple yet powerful tool that is extensively adopted to monitor shifts in the process mean. In recent years, auxiliary‐information–based (AIB) control charts have received considerable attention as these control charts outperform their counterparts in monitoring changes in the process parameter(s). In this article, we integrate the conforming run length chart with the existing AIB double sampling (AIB DS) chart to propose an AIB synthetic DS chart for the process mean. The AIB synthetic DS chart also encompasses the existing synthetic DS chart. A detailed discussion on the construction, optimization, and evaluation of the run length profiles is provided for the proposed control chart. It is found that the optimal AIB synthetic DS chart significantly outperforms the existing AIB Shewhart, optimal AIB synthetic, and AIB DS charts in detecting various shifts in the process mean. An illustrative example is given to demonstrate the implementation of the existing and proposed AIB control charts.  相似文献   

13.
A control chart is a powerful statistical process monitoring tool that is frequently used in many industrial and service organizations to monitor in‐control and out‐of‐control performances of the manufacturing processes. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been recognized as potentially powerful tool in quality and management control. These control charts are sensitive to both small and moderate changes in the process. In this paper, we propose a new CUSUM (NCUSUM) quality control scheme for efficiently monitoring the process mean. It is shown that the classical CUSUM control chart is a special case of the proposed controlling scheme. The NCUSUM control chart is compared with some of the recently proposed control charts by using characteristics of the distribution of run length, i.e. average run length, median run length and standard deviation of run length. It is worth mentioning that the NCUSUM control chart detects the random shifts in the process mean substantially quicker than the classical CUSUM, fast initial response‐based CUSUM, adaptive CUSUM with EWMA‐based shift, adaptive EWMA and Shewhart–CUSUM control charts. An illustrative example is given to exemplify the implementation of the proposed quality control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Statistical process control based on the cumulative counts of conforming items instead of occurrences of non-conformances has proved to be useful for the manufacture of high-quality products. In this paper we study some interesting and useful issues of using cumulative counts in practice. The general problem in the control of high-quality products is first discussed, which leads to the calculation of the probability that a process is out of control when a single non-conforming item is detected. A decision graph is introduced with which we can easily judge whether the process is out of control when a non-conforming item is observed after a number of conforming ones, accompanied by the certainty level of this judgement. Next, using the equivalence of information on one non-conforming item found in a number of inspected items to that on zero non-conforming items in a smaller sample, we give a method for choosing a new starting point to reset the cumulative count after the detection of the non-conforming item. The procedures are all statistically justified and have the practical merit of simplicity in actual applications.  相似文献   

15.
There is growing literature on new versions of “memory-type” control charts, where deceptively good zero-state average run-length (ARL) performance is misleading. Using steady-state run-length analysis in combination with the conditional expected delay (CED) metric, we show that the increasingly discussed progressive mean (PM) and homogeneously weighted moving average (HWMA) control charts should not be used in practice. Previously reported performance of methods based on these two approaches is misleading, as we found that performance is good only when a process change occurs at the very start of monitoring. Traditional alternatives, such as exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) charts, not only have more consistent detection behavior over a range of different change points, they can also lead to better out-of-control zero-state ARL performance when properly designed.  相似文献   

16.
17.
The exponentially weighted moving average (EWMA), cumulative sum (CUSUM), and adaptive EWMA (AEWMA) control charts have had wide popularity because of their excellent speed in tracking infrequent process shifts, which are expected to lie within certain ranges. In this paper, we propose a new AEWMA dispersion chart that may achieve better performance over a range of dispersion shifts. The idea is to first consider an unbiased estimator of the dispersion shift using the EWMA statistic, and then based on the magnitude of this shift, select an appropriate value of the smoothing parameter to design an EWMA chart, named the AEWMA chart. The run length characteristics of the AEWMA chart are computed with the help of extensive Monte Carlo simulations. The AEWMA chart is compared with some of the existing powerful competitor control charts. It turns out that the AEWMA chart performs substantially and uniformly better than the EWMA‐S2, CUSUM‐S2, existing AEWMA, and HHW‐EWMA charts when detecting different kinds of shifts in the process dispersion. Moreover, an example is also used to explain the working and implementation of the proposed AEWMA chart.  相似文献   

18.
There has been a growing interest in monitoring processes featuring serial dependence and zero inflation. The phenomenon of excessive zeros often occurs in count time series because of the advancement of quality in manufacturing process. In this study, we propose three control charts, such as the cumulative sum chart with delay rule (CUSUM‐DR), conforming run length (CRL)‐CUSUM chart, and combined Shewhart CRL‐CUSUM chart, to enhance the performance of monitoring Markov counting processes with excessive zeros. Numerical experiments are conducted based on integer‐valued autoregressive time series models, for example, zero‐inflated Poisson INAR and INARCH, to evaluate the performance of the proposed charts designed for the detection of mean increase. A real example is also illustrated to demonstrate the usability of our proposed charts.  相似文献   

19.
Control charting cyber vulnerabilities is challenging because the same vulnerabilities can remain from period to period. Also, hosts (personal computers, servers, printers, etc.) are often scanned infrequently and can be unavailable during scanning. To address these challenges, control charting of the period-to-period demerits per host using a hybrid moving centerline residual-based and adjusted demerit (MCRAD) chart is proposed. The intent is to direct limited administrator resources to unusual cases when automatic patching is insufficient. The proposed chart is shown to offer superior average run length performance compared with three alternative methods from the literature. The methods are illustrated using three datasets.  相似文献   

20.
The conventional cumulative sum (CUSUM) chart is usually designed based on a known shift size. In usual practice, shift size is often unknown and can be assumed to vary within an interval. With such a range of shift size, the dual CUSUM (DCUSUM) chart provides more sensitivity than the CUSUM chart. In this paper, we propose dual Crosier CUSUM (DCCUSUM) charts with and without fast initial response features to efficiently monitor the infrequent changes in the mean of a normally distributed process. Monte Carlo simulations are used to compute the run length characteristics of one‐sided and two‐sided DCCUSUM charts. These run length characteristics are compared with those of the CUSUM, Crosier CUSUM, Shewhart‐CUSUM, and DCUSUM charts in terms of the integral relative average run length. It turns out that the proposed chart shows better performance when detecting a range of mean shift sizes. A real dataset is considered to illustrate the implementation of existing and proposed charts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号