首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of co[poly(ethylene terephthalate-p-oxybenzoate)] thermotropic copolyester with different compositions were prepared by the copolymerization of either poly(ethylene terephthalate) (PET) polymer or its oligomer with p-acetoxy-benzoic acid. The polymeric products were subjected to solid-state polymerization for various time intervals. Effects of composition ratio and solid-state polymerization time on X-ray diffraction behavior were investigated. It is found that the effect of transesterification induced by solid-state polymerization causes an increase in crystallinity with the copolyesters having high mol % of p-oxybenzoic acid (POB) moiety and causes a decrease in crystallinity with the copolyesters having high mol % of PET moiety. In general, the crystallinity of copolyesters is first increased and then decreased as solid-state polymerization time proceeds. However, the crystallinity of copolyester having POB/PET = 80/20 composition is increased generally at 4-h solid-state polymerization. It is also found that the crystallinity of copolyesters is decreased by quenching. The copolyester based upon either PET oligomer with 4-h solid-state polymerization or PET polymer with 8-h solid-state polymerization shows the most similar X-ray diffraction pattern with that of Eastman 10109. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
A series of co[poly(ethylene terephthalate-p-oxybenzoate)] thermotropic copolyesters with various compositions were prepared by the copolymerization of either poly(ethylene terephthalate) polymer (PET) or its oligomer (OET) as moiety (II) and p-acetoxy-benzoic acid (POB) as moiety (I). The polymeric products obtained were then subjected to solid-state polymerization. The glass and melting transitions of the copolyesters obtained have been studied by differential scanning calorimetry (DSC). Effects of composition and solid-state polymerization on DSC are discussed. The melting point of copolyesters possesses a higher value if the PET polymer is used as PET moiety in the copolyesters. In the DSC scan of the POB rich composition, the endothermic peak shows obscurely and enthalpy of fusion becomes small due to the change in the crystalline morphology from isotropic to anisotropic. In general, the melting point of copolyesters is increased by the solid-state polymerization reaction. It is also found that both the melting temperature and enthalpy of fusion of the copolyesters can be increased simultaneously by the solid-state polymerization reaction only when the composition of POB/PET is 80/20. This phenomenum at this composition may be attributed to the annealing effect caused by the randomness of two moiety units on the backbone chain of copolyesters and the increased molecular weight as well. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
4.
A series of co[poly(ethylene terephthalate-p-oxybenzoate)] thermotropic copolyester was synthesized from various ratios of two different moieties of either poly(ethylene terephthalate) (PET) or its oligomer as moiety ( II ) with p-acetoxybenzoic acid as moiety ( I ) through the polycondensation process. The polymeric products obtained were then ground and subjected to solid-state polymerization under vacuum for various polymerization times. Thermogravimetric analysis (TGA) and the derivative thermogravimetric analysis (DTG) were performed with these samples obtained. Also, a commercial product, Eastman 10109, was analyzed in comparison with these samples. It was found that the copolyesters made of PET and of its oligomer in a p-oxybenzoate (POB):PET = 80 : 20 composition ratio and subjected to 8 and 4 h solid-state polymerization times, respectively, showed the most similar thermogravimetric behavior with Eastman 10109. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Blending of thermotropic liquid crystalline polyesters (LCPs) with conventional polymers could result in materials that can be used as an alternative for short fiber‐reinforced thermoplastic composites, because of their low melt viscosity as well as their inherent high stiffness and strength, high use temperature, and excellent chemical resistance and low coefficient of expansion. In most of the blends was used LCP of 40 mol % of poly(ethylene terephthalate) (PET) and 60 mol % of p‐acetoxybenzoic acid (PABA). In this work, blends of several copolyesters having various PABA compositions from 10 to 70 mol % and poly(butylene terephthalate) (PBT) were prepared and their rheological and thermal properties were investigated. For convenience, the copolyesters were designated as PETA‐x, where x is the mol % of PABA. It was found that PET‐60 and PET‐70 copolyesters decreased the melt viscosity of PBT in the blends and those PBT/PETA‐60 and PBT/PETA‐70 blends showed different melt viscosity behaviors with the change in shear rate, while blends of PBT and PET‐x having less than 50 mol % of PABA exhibited totally different rheological behaviors. The blends of PBT with PETA‐50, PETA‐60, and PETA‐70 showed the morphology of multiple layers of fibers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1797–1806, 1999  相似文献   

6.
The poly(ethylene terephthalate‐co‐ethyleneoxide‐co‐DL ‐lactide) copolymers were successfully prepared by the melt reaction between poly(ethylene terephthalate), poly(ethylene glycol), and DL ‐oligo(lactic acid) without any catalysts. The transesterification between ethylene terephthalate, ethyleneoxide, and lactide segments during the reaction was confirmed by the 1H NMR analysis. The effect of reaction temperatures and the starting feed ratios on the molecular microstructures, molecular weights, solubility, thermal properties, and degradability of the copolyesters was extensively studied. The values of crystallization temperature, melting temperature, crystallization, and melting enthalpy of the copolyesters were found to be influenced by the reaction temperatures, starting feed ratios, etc. The copolyesters showed good tensile properties and were found to degrade in the soil burial experiments during the period of 3 months. The morphology of the copolyester films were also investigated by scanning electron microscopy during soil burial degradation. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

7.
以对苯二甲酸、乙二醇为主要原料,添加共聚单体新戊二醇(NPG)、5-叔丁基间苯二甲酸(tBI),通过熔融缩聚合成了一系列不同组成比例的共聚酯,分析了共聚酯的化学结构与组成、特性黏度、热性能、结晶性能和动态热力学性能。结果表明:随着tBI和NPG含量的增加,共聚酯的熔点降低,结晶能力逐渐减弱;当tBI和NPG物质的量分数总和达到13%及以上时,共聚酯为完全无定形态;tBI单元的加入使共聚酯的玻璃化转变温度升高,弥补了PENT共聚酯玻璃化转变温度低于PET的缺点;共聚酯的初始分解温度高于PET,初始储能模量大于PET,而随着测试温度的升高,共聚酯的柔韧性大于PET材料。  相似文献   

8.
Thermotropic liquid‐crystalline polymers (TLCPs) have aroused considerable interest due to their attractive properties as high‐performance materials. Significant research attention has been devoted to investigating the relationship among monomer structures, syntheses and end‐use properties of TLCPs. The study reported here concerns the preparation, characterization and melt spinning of novel copolyesters containing two different flexible units together with two different aromatic units in the polymer chains. A range of copolyesters based on p‐hydroxybenzoic acid (p‐HBA), m‐hydroxybenzoic acid, p‐hydroxyphenylacetic acid and poly(ethylene terephthalate) were synthesized. The liquid crystallinity, thermal properties and degrees of crystallinity of these copolyesters were investigated using hot‐stage polarized light microscopy, differential scanning calorimetry, thermogravimetry and wide‐angle X‐ray diffraction. Copolyester fibres were characterized using scanning electron microscopy. The copolyesters were melt‐processable, thermally stable and could be processed above their melting temperatures without degradation. The degree of crystal structure was found to depend upon the content of p‐HBA. The fibres prepared showed that polymer chains had a well‐developed fibrillar structure. Novel TLCPs containing flexible units in the main chain were synthesized and characterized. Copolyesters containing p‐HBA units ranging from 55 to 70 mol% exhibited phase‐separated liquid‐crystalline morphology, appropriate melting temperatures and high thermal stability for melt processing. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
Copolyesters were synthesized from bis(hydroxyethyl) naphthalate/bis(hydroxymethylcyclohexane)naphthalate (BHEN/BHCN) with various compositions. Copolyesters having intrinsic viscosities of 0.58–0.65 dL g were obtained by melt polycondensation in the presence of metallic catalysts. The optimum condition for polyethylene-1,4-cyclohexanedimethylene naphthalate (PECN) copolyester manufacturing is the transesterification under a nitrogen atmosphere for 4 h at a temperature of 245 ± 5°C followed by polymerization under 2 mmHg for 50 min at a temperature of 290–320°C. Most copolyesters have better thermal stability than has poly(ethylene naphthalate) (PEN) and the effect of the cyclohexane–dimethylene structure on the thermal and crystalline properties of the resulting copolyesters was investigated using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Glass transition temperatures of the copolyesters were in the range of 115.2–138.4°C, and 10% weight losses in nitrogen were all above 453°C. The solubility, crystallinity, and moisture absorption of the copolyesters were also investigated. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:2245–2252, 1998  相似文献   

10.
A series of novel poly(1,4-cyclohexanedimthylene terephthalate-co-1,4-cyclohxylenedimethylene 2,6-naphthalenedicarboxylate) (PCTN) copolyesters were successfully melt polymerized using different content of trans- or cis-isomers. Before evaluations, the performance properties, their actual chemical composition, chemical structure, and molecular weight were determined using proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FTIR), and intrinsic viscosity (IV) measurements. Thermal studies of obtained copolyesters were carried out using differential scanning calorimetry (DSC). Thermal degradation behaviors were analyzed by thermogravimetric analysis (TGA). Randomly oriented film specimens were developed using a hot-press and their thermal, barrier, dimensional stability, and optical properties were analyzed and compared with conventional poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN). The results revealed that glass transition temperature (Tg), melting temperature (Tm), and crystallinity (Xc) of the synthesized copolyesters are increased in a linear trend by increasing the trans-1,4-cyclohexanedimethanol (trans-CHDM) isomers. It was also found that synthesized films had better thermal, barrier, optical, and dimensional stability properties than conventional PET and PEN films. Results clearly indicated that high trans-CHDM isomers significantly improve the performance properties of the fabricated films. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48950.  相似文献   

11.
Homo‐ and copolyesters of derivatives of hydroxyazobenzenecarboxylic acid with various percentage compositions of m‐hydroxy benzoic acid (m‐HBA)/p‐hydroxy benzoic acid (p‐HBA) were synthesized and characterized. The properties of the copolyesters were compared with their corresponding homopolyesters. The solubility of the copolyesters with m‐HBA increased because of the decrease in the rigidity of the polymer chain attributed to the introduction of nonlinear molecules, whereas the solubilities of the copolyesters with p‐HBA changed only slightly compared to their corresponding homopolyesters. Thermal and phase behaviors of the polymers were characterized by TGA, DSC, and polarizing light microscopy (PLM) methods. Above 30% composition of m‐HBA, the thermal stability of the copolyesters with m‐HBA decreased compared to that of the homopolyester P1, whereas the copolyesters of p‐HBA possessed greater thermal stability than that of their homopolyesters at all compositions. The introduction of the long, flexible alkyl side chain laterally to the backbone of the azobenzene moiety drastically reduced the transition temperature of the homopolyester, but without destroying the mesophase. The effect of copolymerization on liquid‐crystalline behavior and transition temperature of the copolymers was discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1976‐1982, 2004  相似文献   

12.
Poly(p‐dioxanone)–poly(ethylene glycol)–poly(p‐dioxanone) ABA triblock copolymers (PEDO) were synthesized by ring‐opening polymerization from p‐dioxanone using poly(ethylene glycol) (PEG) with different molecular weights as macroinitiators in N2 atmosphere. The copolymer was characterized by 1H NMR spectroscope. The thermal behavior, crystallization, and thermal stability of these copolymers were investigated by differential scanning calorimetry and thermogravimetric measurements. The water absorption of these copolymers was also measured. The results indicated that the content and length of PEG chain have a greater effect on the properties of copolymers. This kind of biodegradable copolymer will find a potential application in biomedical materials. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1092–1097, 2006  相似文献   

13.
Poly(ethylene terephthalate)‐co‐poly(ethylene DDP)s [PET‐co‐poly(ethylene DDP)s], were synthesized by charging 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOP), itaconic acid, terephthalic acid, and ethylene glycol in one reactor to conduct the microaddition reaction (using H2PtCl6 as catalyst), esterification reaction, and polycondensation reaction. H2PtCl6 has demonstrated to be a highly efficient microaddition catalyst to improve the DDP conversion. The microaddition reaction of the phosphorus compound (DOP) with the itaconic acid can be proceeded at a significantly lower temperature (110°C) and results in higher conversion (> 98%). The use of the H2PtCl6 catalyst makes it possible to charge all the reactants in one reactor to produce high molecular weight phosphorus‐containing copolyesters without requiring the presynthesis of the DDP. These resulting copolyesters are identified by Fourier transform infrared spectroscopy, 1H‐NMR, and differential scanning calorimetric analysis. Thermal characteristics, thermal stability, intrinsic viscosity, acid value, and rheological and mechanical properties of these copolyesters were also characterized. The presence of the bulky pendent phosphorus side groups in the copolyester tends to decrease the structural regularity and retards its crystallization. The formation of a protected char layer for the phosphorus‐containing copolyester raises the decomposition temperature of the copolyester under an oxygen atmosphere higher than that of PET. The limiting oxygen index values of all phosphorus‐containing copolyesters are all higher than 33. Higher phosphorus content results in decreasing crystallinity, lower melting temperature, lower decomposition temperature, as well as lower tensile strength, but increasing residual char after thermal degradation and higher limiting oxygen index value. The rheological behaviors of copolyesters remain similar to that of PET. The glass temperatures of copolyesters are all ∼ 77°C (76.8°–77.2°C). Incorporation of phosphorus moieties into its molecular chain has a significant effect on thermal and flame retardancy behavior. However, the crystal lattice of all copolyesters do not change with incorporation of the pendent phosphorus side group in the backbone of the copolyester. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 109–122, 1999  相似文献   

14.
A series of poly(ethylene terephthalate‐co‐isophthalate) copolyesters containing upto 50%‐mole of isophthalic units were prepared by polycondensation from ethylene terephthalate and ethylene isophthalate fractions of linear oligomers containing from 5 to 6 repeating units in average. The polyesters were obtained in good yields and with high‐molecular‐weights. The microstructure of the copolyesters was studied as a function of reaction time by 13C‐NMR showing that a random distribution of the comonomers was achieved since the earlier stages of polycondensation. The melting temperature and enthalpy of the copolyesters decreased with the content of isophthalic units so that copolyesters containing more than 25% of these units were amorphous. Isothermal crystallization studies made on crystalline copolyesters revealed that the crystallization rate of copolyesters decreased with the content in isophthalic units. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
A series of poly(ethylene 2,6‐naphthalate) (PEN) copolyesters was synthesized using three monomers (newly prepared 1,4‐bis[(methoxycarbonylethoxy)methyl]benzene, dimethyl 2,6‐naphthalenedicarboxylate, and ethylene glycol) with various molar ratios to investigate the effects of these compositions on thermal properties of the copolyesters. Copolyesters having weight average molecular weights of 11,000–22,000 were obtained by melt polycondensation in the presence of metallic catalysts. The structures and thermal properties of the resulting random PEN copolyesters were characterized by nuclear magnetic resonance, differential scanning calorimetry, thermal‐mechanical analyzer, and X‐ray diffraction analysis. The results of thermal measurements revealed that thermal properties depended on the corresponding new diacid comonomer content of the PEN copolyesters. Nonetheless, the crystal structures of PEN copolyesters and PEN homopolymer are identical. POLYM. ENG. SCI., 54:2641–2644, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
Series of copolyesters based on poly(propylene succinate) (PPS) and poly(butylene succinate) (PBS), which can be produced from biological feedstock, and postconsumer poly(ethylene terephthalate) (PET) were synthesized with the aim of developing sustainable materials, which combine the mechanical properties of high performance elastomers with those of flexible plastics. The aliphatic polyesters were synthesized by the catalyzed two‐step transesterification reaction of dimethyl succinate, 1,3‐propanediol, and 1,4‐butanediol followed by melt reaction with PET in bulk. The content of PET segments in the polymer chains was varied from about 10 to 100 wt % per 100 wt % PPS or PBS. The effect of the introduction of the PET segments on the structure, thermal, physical, and mechanical properties was investigated. The composition and structure of these aliphatic/aromatic copolyesters were determined by NMR spectroscopy. The thermal properties were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The level of crystallinity was studied by means of DSC and wide‐angle X‐ray scattering. A depression of melting temperature and a reduction of crystallinity of copolyesters with increasing content of PET segments were observed. Consequently, the tensile modulus and strength of copolyesters decreased, and the elongation at break increased with PET content in the range of 10?50 wt %. Thus, depending on PET content, the properties of copolyesters can be tuned ranging from semicrystalline polymers possessing good tensile modulus (380 MPa) and strength (24 MPa) to nearly amorphous polymer of high elongation (~800%), and therefore they may find applications in thermoplastics as well as elastomers or impact modifiers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39815.  相似文献   

17.
In this study, materials with low melting temperatures and high toughness are developed for orthopedic applications. A series of an aliphatic copolyester based on sebacic acid (SeA), a green resource, is copolymerized with ethylene glycol, trimesic acid, aminocaproic acid, and adipic acid (AA) to produce poly(ethylene sebacate‐co‐ethylene adipate) (PESA) with various molar ratios through melt polymerization. Thermal characterizations of the PESA copolyesters are tuned with SeA and AA in varying molar ratios, exhibiting a crystalline phase with a lower degree of perfection. The melting point (Tm) and crystallization temperature (Tc) of the copolyesters are observed at 60–70 and 30–40 °C, respectively. Furthermore, a high Young's modulus ranging between 140 and 200 MPa is observed, which could be attributed to the 3D network structure formed by the trimesic acid unit used as a cross‐linking agent. Within the authors' research group, the PESA copolyesters are adopted to reinforce the mechanical properties of a 3D air mesh fabric as a composite application. Also, the highly breathable and low‐weight characteristics of 3D fabric with PESA copolyesters render them suitable for replacing traditional plaster in the future.  相似文献   

18.
Random copolyester namely, poly(ethylene terephthalate‐co‐sebacate) (PETS), with relatively lower molecular weight was first synthesized, and then it was used as a macromonomer to initiate ring‐opening polymerization of l ‐lactide. 1H NMR quantified composition and structure of triblock copolyesters [poly(l ‐lactic acid)‐b‐poly(ethylene terephthalate‐co‐sebacate)‐b‐poly(l ‐lactic acid)] (PLLA‐PETS‐PLLA). Molecular weights of copolyesters were also estimated from NMR spectra, and confirmed by GPC. Copolyesters exhibited different solubilities according to the actual content of PLLA units in the main chain. Copolymerization effected melting behaviors significantly because of the incorporation of PETS and PLLA blocks. Crystalline morphology showed a special pattern for specimen with certain composition. It was obvious that copolyesters with more content of aromatic units of PET exhibited increased values in both of stress and modulus in tensile test. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
Two series of thermotropic liquid crystalline copolyesters containing mainly the p‐oxybenzoate unit were studied by thermogravimetry to ascertain the kinetic parameters of their thermal degradation by six multiple heating‐rate techniques for the first time. The two copolyesters are (1) poly(p‐oxybenzoate‐co‐ethylene terephthalate‐co‐vanillate) and (2) poly(p‐oxybenzoate‐co‐2,6‐oxynaphthoate). The effect of copolymer composition, degradation stage, and test atmosphere on the three kinetic parameters of the thermal degradation in the weight loss range from 5 to 70% is discussed. Comparison of the multiple heating‐rate techniques with single heating‐rate techniques for calculating the kinetic parameters of thermal degradation was made. The respective activation energy, order, and natural logarithm of the frequency factor of the thermal degradation in nitrogen for the poly(p‐oxybenzoate‐co‐ethylene terephthalate‐co‐vanillate)s are between 180 and 230 kJ/mol, between 2.0 and 5.0, and between 28 and 38 min−1 for the first degradation step and between 250 and 390 kJ/mol, between 6.4 and 7.6, and between 38 and 64 min−1 for the second degradation step of the poly(p‐oxybenzoate‐co‐ethylene terephthalate‐co‐vanillate)s with the unit‐B content in the range of 70–75 mol %. The respective activation energy, order, and natural logarithm of frequency factor of the first degradation stage for the poly(p‐oxybenzoate‐co‐2,6‐oxynaphthoate) (Vectra) are between 380 and 570 kJ/mol, between 2.0 and 3.1, and between 55 and 68 min−1 in nitrogen and between 160 and 210 kJ/mol, between 0.8 and 1.8, and between 25 and 32 min−1 in air. The best methods of calculating the kinetic parameters of the thermal degradation for the copolymers are suggested. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2016–2028, 1999  相似文献   

20.
Copolyesters containing naphthalene structure were synthesized from bis(hydroxyethyl)naphthalate (BHEN) and various aralkyloxy diols. The starting bis(4-(2-hydroxyethoxy)aryl) compounds were derived from a nucleophilic substitution of various bisphenols with ethylene carbonate in the presence of potassium iodide (KI). Copolyesters having intrinsic viscosities of 0.50 to 0.60 dL/g were obtained by melt polycondensation in the presence of metallic catalysts. The effects of reaction temperature and time on the formation of copolyesters were investigated in order to obtain an optimum condition for copolyester manufacturing. The optimal reaction temperature and time were found to be 290 to 310°C and 90 to 120 min, respectively. Most of these copolyesters have better solubilities than polyethylene naphthalate (PEN) in aprotic solvents such as N-methyl-2-pyrrolidone or m-cresol. The thermal properties of the copolyesters were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Glass transition temperatures of these copolyesters were in the range of 90 to 141°C, and 10% weight loss values in nitrogen were all above 460°C. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号