首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between the microstructure and corresponding mechanical properties developed during injection molding of blends containing a liquid crystalline polymer (LCP) as the minor component and an engineering polymer system has been studied. A wholly aromatic copolyester LCP (Vectra A950) was melt blended at different compositions with a thermoplastic matrix consisting of a commercial compatibilized blend of polyamide-6 and ABS (Triax 1180). These blends were prepared under two different sets of injection molding conditions. In the first case, a higher melt temperature, higher barrel temperature, lower injection pressure, lower mold temperature, and shorter residence time in the mold were used during injection molding, as compared with the second case. The mechanical properties of the blends were superior to those of the base polymer. In the second case, the resulting injection-molded specimens had a distinct skin–core morphology where elongated fibrils of LCP constituted the skin layer. The mechanical properties of the blends processed under the second set of processing conditions were superior to those of the first, though the trends in both cases were the same. To study the effects of process variables the 15% LCP blend and the second set of processing conditions were taken as the base. Samples were injection-molded by varying one parameter at a time. It was seen that the properties of the blend were increased by maintaining a lower barrel temperature, greater injection pressure, lower injection speed, higher mold temperature, and a greater residence time in the heated mold. Thus it was found that the processing conditions played a vital role in determining the mechanical properties and morphology of the polyblends. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Blends of a new phenolphthalein poly(ether sulfone) (PES-C) and a thermotropic liquid crystalline polymer (LCP) were prepared by melt-blending in a twin-screw extruder. Rheological properties, fracture toughness, KIC, and morphology of the blends were studied. It was found that the addition of LCP could reduce the melting viscosity and improve the fracture toughness of the PES-C matrix. The morphology of the LCP phase for the fractured section changed with increasing LCP content in the blend from dropletlike to fibrillar and layered structure. Strong interfacial adhesion could be observed at a lower content of LCP. The toughening mechanisms by blending LCP were also discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
《Polymer》1997,38(22):5557-5564
The mechanical properties of self-reinforced liquid crystalline polymer/polypropylene (LCP/PP) blends strongly depend on the viscosity ratio of the blend components in the melt. This ratio was determined for PP blends with different commercial LCPs (Vectra A950 and Vectra B950), by means of capillary rheometry, under conditions representative for the blending process during extrusion. It was found that optimal mechanical properties were achieved when the LCP/PP viscosity ratio at 285°C ranges between 2 and 4 at a shear rate of 800–1000s−1. The LCP/PP viscosity ratio appears to be shear stress dependent. This creates the option of fine tuning the LCP droplet deformation process by means of the extrusion rate. This shear stress dependence is more pronounced for PP blends with Vectra B950 than for blends with Vectra A950.  相似文献   

4.
A thermotropic liquid crystalline polymer (LCP), when added to polystyrene (PS), can function as both a processing aid and a reinforcing filler. Thermal, rheological, and mechanical properties of the pure components and blends containing up to 10 percent LCP are reported. The LCP used is immiscible with PS, and when an extensional component of flow is present during processing, the LCP forms an elongated fibrous phase oriented in the flow direction. This oriented phase lubricates the melt, substantially lowering the viscosity. When the processed blend is cooled, the dispersed fibrous LCP phase is preserved in the solidified material. The LCP microfibers behave like short reinforcing fibers to improve the mechanical properties of the blend; for example, at an LCP concentration of 4.5 percent, the modulus is increased about 40 percent vs. pure PS.  相似文献   

5.
Blending of polystyrenes (PS) with a thermotropic liquid crystalline polymer (LCP) was performed by using a continuous corotating twin screw extruder. The influence of LCP content on the blending process was studied by changing the barrel heater temperature and the screw speed. The torque of screw shafts, generated during the blending process, was influenced by LCP content and its influence was not simple. The torque generated during the blending process was not directly related to the apparent melt viscosity of blends. Further, the effects of the matrix viscosity on the morphology and mechanical properties of the PS/LCP blends were studied using three grades of PS as matrix resins. It was found that the size of the LCP dispersed phase decreased with increasing matrix viscosity. Consequently, the mechanical properties of the PS/LCP blend were improved. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Poly(butylene adipate-co-terephthalate) (PBAT) is a soft biodegradable polymer with a low melting temperature. PBAT has been melt-blended with a liquid crystalline polymer (LCP) aiming at preparing a new biodegradable polymer blend with improved mechanical properties. The phase structure and crystalline morphologies of the PBAT/LCP blends were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). It was found that the LCP domains are precisely dispersed in the PBAT matrix and that these domains act as the nuclei for PBAT crystallization. The nonisothermal crystallization temperature from the melt was dramatically shifted from 50°C to about 95°C by the addition of 20% LCP. In addition, the tensile modulus of the prepared blends increases gradually with increasing LCP content, indicating the excellent strengthening effects of LCP on the PBAT matrix. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Extruded films of liquid crystalline polymer (LCP)/fluoropolymer blends were melt drawn to develop uniaxial orientation of a microfibrillar dispersed LCP phase. The anisotropy of the films increased with increasing draw and LCP content in the blend. Laminated composite plates were prepared using the extruded sheets as prepreg. The mechanical properties and coefficient of thermal expansion (CTE) of the prepreg and laminates agreed well with predictions from composite lamination theories. The potential for replacing glass fiber reinforced fluoropolymers with LCP/fluoropolymer blends in applications such as microwave circuit boards is discussed.  相似文献   

8.
Blends of an amorphous polyamide (PA) and a liquid crystalline copolyesteramide (LCP), poly(naphthoate-aminophenoterephthalate) were prepared in a twin-screw extruder. Specimens for mechanical testing were prepared by injection molding. Morphological, thermal, mechanical, and rheological properties were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometry, capillary rheometry, and a tensile tester, respectively. The tensile mechanical behavior of the LCP/PA blends was found to be affected by their compositions and specimen thickness. Tensile testing revealed that the tensile mechanical behavior of the LCP/PA blends was very similar to that of polymeric composite and the tensile strength of the LCP/PA (50/50) blend was approximately two times of the value of PA homopolymer and exceeded that of pure LCP. The morphology of the LCP/PA blends was also found to be affected by their compositions. SEM studies revealed that the liquid crystalline polymer (LCP) formed finely dispersed spherical domains in the PA matrix and the inclusions were deformed into fibrils from the spherical droplets with increasing LCP content. It has been found that droplet and fiber formations lead to low and high strength material, respectively. In particular, at specific LCP content (50 wt%), the tensile strength of the LCP/PA blend exceeded that of pure LCP. The improvement in tensile properties is likely due to the reinforcement of the PA matrix by the fibrous LCP phase as observed by SEM. A distinct shell-core morphology was found to develop in the injection molded samples of these blends. This is believed to have a synergistic effect on the tensile properties of the LCP/PA blends. The rheological behavior of the LCP/PA blends was found to be very different from that of the parent polymers and significant viscosity reductions were observed for the LCP/PA (50/50) blend. Based upon DSC, these blends have shown to be incompatible in the entire range of concentrations.  相似文献   

9.
Microfibrillar-reinforced composites based on two dispersed phases, liquid crystalline polymer (LCP) and recycled poly(ethylene terephthalate) (rPET), and polystyrene (PS) were prepared using extrusion process. The rheological behavior, morphology, and thermal stability of LCP/PS and rPET/PS blends containing various dispersed phase contents were investigated. All blends and LCP exhibited shear thinning behavior, whereas Newtonian fluid behavior was observed for rPET. The incorporation of both LCP and rPET into PS significantly improved the processability. The potential of rPET as a processing lubricant by bringing down the melt viscosity of the blend system was as good as LCP. The elongated LCP domains were clearly observed in as-extruded strand. Although the viscosity ratio of rPET/PS system was lower than that of LCP/PS system, most rPET domains appeared as small droplets. An addition of LCP and rPET into PS matrix improved the thermal resistance in air significantly. The obtained results suggested the high potential of rPET as a processing aid and thermally stable reinforcing-material similar to LCP. The mechanical properties of the LCP-containing blends were mostly higher than those of the corresponding rPET-containing blends when compared at the same blend composition.  相似文献   

10.
Ternary in situ butyl rubber (IIR)/poly(butylene terephthalate) (PBT) and liquid crystalline polymer (LCP) blends were prepared by compression molding. The LCP used was a versatile Vectra A950, and the matrix material was IIR/PBT 50/50 by weight. Morphological, thermal, and mechanical properties of blends were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry, and thermogravimetric analysis (TGA). Microscopy study (SEM) showed that formation of fibers is increasing with the increasing amount of LCP A950. Microscopic examination of the fractured surface confirmed the presence of a polymer coating on LCP fibrils. This can be attributed to some interactions including both chemical and physical one. The increased compatibility in polymer blends, consisting of IIR/PBT, by the presence of LCP A950 may be explained by the adsorption phenomena of the polymer chains onto the LCP fibrils. SEM and AFM images provided the evidence of the interaction between IIR/PBT and the LCP. Dynamic mechanical analyses (DMA) and TGA measurements showed that the composites possessed a remarkably higher modulus and heat stability than the unfilled system. Storage modulus for the ternary blend containing 50 wt% of LCP exhibits about 94% increment compared with binary blend of IIR/PBT. From the above results, it is suggested that the LCP A950 can act as reinforcement agent in the blends. Moreover, the fine dispersion of LCP was observed with no extensional forces applied during mixing, indicating the importance of interfacial adhesion for the fibril formation. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

11.
The structure and properties of the as-spun fibers of poly(ethylene terephthalate) (PET) blends with a thermotropic liquid crystalline polymer (LCP), Vectra A900, were studied in detail. The DSC results indicate that the LCP component may act as a nucleating agent promoting the crystallization of the PET matrix from the glassy state but which inhibits its crystallization from the melt due to the existence of an LCP supercooled mesophase. The effect of the drawdown ratio on the orientation of the as-spun blend fibers is highly composition-dependent, which is mainly associated with the formation of LCP fibrils during melt spinning. The modulus of the as-spun blend fibers has a significant increase as the content of LCP reaches 10%, while the tensile strength has a slightly decreasing tendency. The mechanical properties of the as-spun blend fibers could be well improved by heat treatment because of a striking increase in the crystallinity of the PET matrix. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 217–224, 1997  相似文献   

12.
Abstract

The purpose of the present study was to investigate the fibrillisation process of liquid crystalline polymers (LCPs) in an amorphous poly(phenylene ether) (PPE) matrix during melt blending and a subsequent drawing operation, as well as to analyse the relationship between morphology and mechanical properties of the fibrillar reinforced LCP/PPE blends. In order to understand the effect of the compatibility between the blend partners, an additional set of LCP/PEE blends, containing different amounts of a compatibiliser, was studied too. The processing steps included: (i) melt extrusion and continuous hot stretching for fibrillisation of the LCP component in the different LCP/PPE blends, and (ii) compression (CM) or injection moulding (IM) of the drawn blends at temperatures below the melting temperature (Tm) of the LCPs. Samples from each processing stage were characterised by means of scanning electron microscopy (SEM), wide and small angle X-ray scattering (WAXS and SAXS), and mechanical testing. SEM and WAXS showed that the as extruded blends were isotropic, but after hot stretching the LCP components became highly oriented, with a high aspect ratio and a diameter of the fibrils between 0·4 and 3 μm. The fibrillated structure of the LCPs in the blends could be preserved after the compression and injection moulding only at temperatures below Tm of the LCPs. Addition of a compatibiliser to the LCP/PPE blend did not remarkably improve the adhesion between the components, as a result of the large difference between the coefficients of thermal expansion of the blend partners, which leads to different shrinkage conditions of the LCP fibrils and the PPE matrix. The flexural modulus (E) of all IM blends increased stepwise with an increase in the weight (wt) fraction of the LCP. At the same time, the highest values for the flexural strength (σ) were obtained for the LCP/PPE blends containing 5 wt-% LCP.  相似文献   

13.
Chemical reactions can occur during the melt blending of polymers containing an ester group because ester groups are usually unstable at high temperatures; this instability generally deteriorates the mechanical properties of blends. Here, effects of chemical reactions on the rheological and mechanical properties of polycarbonate (PC)/liquid-crystalline polymer (LCP) blends are carefully investigated to determine a method for minimizing such undesirable impacts. For comparison, a physical blend, in which chemical reactions were minimized, was prepared at 300 °C in a twin-screw extruder. Both shear viscosity and complex viscosities of reactive blends were lower than those of physical blends, being almost proportional to [Mw ]3.4 as a result of depolymerization and transesterification. Because of the enhanced miscibility, the tensile modulus of reactive blends increased compared with that of physical blend, according to the increase in the degree of incorporation (DI). It was also possible to increase tensile modulus if triester was added to the reactive blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2799–2807, 2001  相似文献   

14.
Blends of low‐density polyethylene (LDPE) and a glass‐filled thermotropic liquid crystalline polymer (LCP‐g) have been prepared by melt mixing techniques. The thermal transitions, dynamic behavior, morphology and crystalline properties of the blends have been measured by DSC, DMTA, SEM and XRD respectively. The crystallinity decreased with increase in LCP‐g content in the blends. At higher levels of LCP‐g, crystal growth is favored in the PE phase. From DSC, it is found that the thermal stability of the blends increased with the LCP‐g content. The variation of storage modulus, loss modulus and stiffness as a function of blend ratio suggested the phase inversion at the 40–50% level of LCP‐g in the blend. SEM studies revealed that with the increase in LCP‐g content, the flow of the matrix was restricted.  相似文献   

15.
This paper discusses the effect of melt drawing on the mechanical properties and morphology of liquid crystalline polymer (LCP) and thermoplastic polymer blends. Extruded fibers and films of LCP/polymer blends were melt drawn to develop uniaxial orientation of the dispersed LCP phase. The longitudinal modulus increased with increasing draw. The increase in modulus was due to higher aspect ratio of the LCP fibrils and improved molecular orientation of the LCP chains within the fibrils. Laminated composites were prepared using the extruded sheets as prepregs. The mechanical properties and the coefficient of thermal expansion (CTE) of the prepreg and the laminates agreed well with predictions from conventional composite lamination theories.  相似文献   

16.
The use of multiblock copolymers for the compatibilization of immiscible polymer blends is controversially discussed in the literature. Investigations have been carried out to estimate the effect of multiblock copolymers containing segments of a liquid crystalline polyester (LCP) and polysulfone (PSU) segments in blends of the based homopolymers. One goal was to determine whether multiblock copolymers provide an opportunity for compatibilizing PSU/LCP blends. By using PSU/LCP multiblock copolymers with different molecular weights of the blocks in the appropriate binary, solution-casted blends, it was shown that the interpenetration of the polysulfone phase of the block copolymer and the PSU matrix leads to an improved miscibility of the blend. This effect is retained in ternary blends of PSU, LCP, and the multiblock copolymer, assuming a certain critical molecular weight of the multiblock copolymer segments. In addition, some mechanical characteristics of PSU/LCP melt blends such as the E-modulus and fracture strength are improved by adding long-segmented multiblock copolymers. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2293–2309, 1997  相似文献   

17.
E. Shivakumar  E. Segal 《Polymer》2005,46(10):3363-3371
Dynamic mechanical analysis was performed to characterize the viscoelastic properties of binary and ternary blends of fluorocarbon elastomer (FKM), acrylic elastomer (ACM) and liquid crystalline polymer (LCP). The results showed that the storage and loss modulus of all the blends increased significantly with the weight percentage of the LCP. The glass transition temperature evaluated at the loss modulus peak, were in the range of −10-+5 °C for all the blends. The time temperature superposition principle was applied for the FKM/ACM and 20% LCP filled FKM/ACM blend in order to evaluate the changes in the viscoelastic properties of FKM/ACM blend by the addition of LCP. The Arrhenius and William-Landel-Ferry (WLF) equations were used to quantify the viscoelastic behaviour at the glass transition region. Both the blends exhibited a single relaxation, which is glass transition, observed as a peek in the loss modulus at 1 Hz. The glassy moduli of these two systems were found to be comparable, but the rubbery moduli of the LCP filled FKM/ACM was much higher than the LCP unfilled system. However, the viscoelastic behaviour of these two systems and their sensitivity to time temperature may be considered to be quite similar.  相似文献   

18.
WB Xie  KC Tam  CY Yue  YC Lam  L Li  X Hu 《Polymer International》2003,52(5):733-739
A co‐polyester liquid crystalline polymer (LCP) was melt blended with an acrylonitrile–butadiene–styrene copolymer (ABS). LCP fibrils are formed and a distinct skin/core morphology is observed in the injection moulded samples. At higher LCP concentration (50 wt%), phase inversion occurs, where the dispersed LCP phase becomes a co‐continuous phase. While the tensile strength and Young's modulus remain unchanged with increasing LCP content up to 30 wt% LCP, a significant enhancement of the modulus at 50 wt% LCP is observed due to the formation of co‐continuous morphology. The blend modulus is lower than the values predicted by the rule of mixtures, suggesting a poor interface between the LCP droplets and ABS matrix. A copolymer of styrene and maleic anhydride (SMA) was added in the LCP/ABS blends during melt blending. It is observed that SMA has a compatibilizing effect on the blend system and an optimum SMA content exists for mechanical properties enhancement. SMA improves the interfacial adhesion, whereas excess of SMA reduces the LCP fibrillation. Copyright © 2003 Society of Chemical Industry  相似文献   

19.
Structure–property relationships were investigated for blends of a polyester-type thermotropic liquid crystalline polymer (LCP) with polyethylene terephthalate (PET), polypropylene (PP), and polyphenylene sulfide (PPS). The polymers were melt blended in a twin-screw extruder and the blends were extruded to strands of different draw ratios. Tensile properties of the blends were determined as a function of LCP content and draw ratio and compared with the results of morphological and rheological analyses. In general, the strength and stiffness of the matrix polymers were improved with increasing LCP content and draw ratio. At a draw ratio of 11, the blends of PET/30 wt % LCP exhibited a tensile strength about three times and an elastic modulus nearly four times that of pure PET. All blends exhibited a skin/core morphology with thin fibrils in the skin region. The formation and the sizes of the fibril-like LCP domains in the matrices were found to depend on LCP content and the viscosity ratio of the blend components.  相似文献   

20.
We present a basic study of the thermal, dielectric, Theological, and mechanical properties of hydroxybenzoic acid-ethylene terephthalate copolymers (PHB-PET). It is argued that they have two-phase structures, one rich in ethylene terephthalate (PET) and one rich in hydroxybenzoic acid (PHB). Polystyrene (PS) is immiscible in 60% PHB-PET (60-PHB-PET) blends. Polycarbonate (PC) is partially miscible with the high PET phase of 60-PHB-PET. PET seems completely miscible with this high PET phase. Shear viscosity measurements on blends indicate that 60-PHB-PET gives rise to large reductions of viscosity. Extrudates and melt-spun fibers have been prepared. The phase morphologies of low PHB-PET blends as determined by scanning electron microscopy indicate ellipsoids or long fibrils of the, 60-PHB-PET in PS or PC matrices. High extrusion rates and melt spinning produce fibrillar structures. The mechanical properties of films, extrudates, and melt-spun fibers were studied. Blends with 10% 60-PHB-PET exhibited significant increases in Young's modulus and tensile strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号