首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photodegradation of polymer coatings generally involves photooxidation, resulting in the formation of oxidized products, chain scission, and crosslinking. On severe exposure to ultraviolet (UV) light in the presence of air, chemical degradation transforms into substantial changes in the physical and mechanical properties, leading to failures of the coatings. Systematic research by NIST on service life prediction of polymeric coatings indicates that the degradation of polymer coatings starts from the sub-micrometer degradation-susceptible regions at the surface and then grows in width and depth. Additionally, due to the oxygen diffusion effect and the attenuation of the UV light passing through the polymer, the degradation can be spatially heterogeneous. In this study, the changes with depth of the mechanical and chemical properties of a UV-exposed epoxy/polyurethane system were measured by nanoindentation and Fourier transform infrared spectroscopy (FTIR) microscopy using cross-sectioned specimens. Multilayers of epoxy/polyurethane samples were prepared by a draw-down technique. After curing, samples were exposed to the outdoors in Gaithersburg, MD, for four months. Cross-sectioned slices of the exposed and unexposed samples, approximately 500 nm thick as-prepared by microtoming, were used for micro-FTIR imaging. Samples for nanoindentation were prepared by embedding the epoxy/polyurethane multilayers (both exposed and unexposed) in a molding compound, followed by microtoming and polishing the embedded films in the thickness direction. Micro-FTIR images clearly show that, for the outdoor exposed samples, substantial amounts of oxidation products are distributed in the 60 μm deep region from the surface to the epoxy bulk, decreasing in the center of epoxy region and increasing again toward the epoxy/urethane interface. Nanoindentation results also show that the modulus significantly increases in the first 60 μm region after UV degradation, and then decreases gradually with depth until a value slightly higher than the modulus of the undegraded epoxy is reached. The modulus rises again in the region near the epoxy/urethane interface. These similarities in the depth profiles of the properties indicate the linkage between the chemical degradation and the mechanical degradation. The study clearly shows that the spatial distribution of chemical species and mechanical properties is heterogeneous in the thickness direction for polymer coatings after UV degradation. It also demonstrates that cross-sectional analysis using nanoindentation and micro-FTIR imaging techniques is a useful method to characterize the mechanical and chemical depth profiles of polymer coating degradation.
Xiaohong GuEmail:
  相似文献   

2.
李亚东  强克刚  马亿珠  孙磊  吴志申 《化工学报》2008,59(10):2650-2655
采用火焰喷涂法制备了聚酰胺12 (PA12)及聚酰胺12/纳米SiO2 (n-SiO2)复合涂层,并利用电子拉力机、摩擦磨损试验机、红外光谱仪(FTIR)和示差扫描量热仪(DSC)等对涂层的结构与性能进行了研究。红外光谱分析表明PA12及PA12/ n-SiO2粉末在火焰喷涂过程中没有发生氧化或降解反应,表明火焰喷涂法适宜制备PA12及PA12/n-SiO2复合涂层;DSC分析结果表明n-SiO2具有成核剂作用,能提高PA12大分子的结晶速度及结晶度;涂层力学性能及摩擦磨损性能分析表明n-SiO2能提高涂层的力学性能,改善涂层的耐老化性能和摩擦磨损性能。当n-SiO2添加量为1.5%(质量)时,涂层综合性能最佳。  相似文献   

3.
Automotive coatings must provide excellent resistance to chemical and mechanical damage in order to maintain a vehicle's long-term appearance and the owner's long-term satisfaction. The Automotive Industry and coating suppliers are partners in design and delivery of future coatings capable of meeting customer demanded performance. As a result of this partnership, new coating materials are being explored based on oligomer chemistry that show promise in providing improvements in both physical and chemical properties/performance and the long-term maintenance of those properties. Oligomeric systems are also useful in design of low VOC coatings. These supersolids coatings will be capable of meeting current and future air quality standards. In this paper measurement techniques for monitoring chemical and mechanical property changes, including cure rate, crosslinking, tensile properties, rheology and scratch and mar performance, were explored. Laboratory mar tests, wet and dry rub tests, which have been validated by commercial experience, are currently used as the basis for comparison of a coating's mechanical performance. QUV accelerated weathering was combined with micro-scratch experiments, atomic force microscopy, optical microscopy, image analysis and IR surface characterization techniques to provide correlation's between chemical composition and mechanical performance, and an indication of service life.  相似文献   

4.
Many coating properties such as mechanical, electrical, and ultraviolet (UV) resistance are greatly enhanced by the addition of nanoparticles, which can potentially increase the use of nanocoatings for many outdoor applications. However, because polymers used in all coatings are susceptible to degradation by weathering, nanoparticles in a coating may be brought to the surface and released into the environment during the life cycle of a nanocoating. Therefore, the goal of this study is to investigate the process and mechanism of surface degradation and potential particle release from a commercial nanosilica/polyurethane coating under accelerated UV exposure. Recent research at the National Institute of Standards and Technology (NIST) has shown that the matrix in an epoxy nanocomposite undergoes photodegradation during exposure to UV radiation, resulting in surface accumulation of nanoparticles and subsequent release from the composite. In this study, specimens of a commercial polyurethane (PU) coating, to which a 5 mass% surface-treated silica nanoparticle solution was added, were exposed to well-controlled, accelerated UV environments. The nanocoating surface morphological changes and surface accumulation of nanoparticles as a function of UV exposure were measured, along with chemical change and mass loss using a variety of techniques. Particles from the surface of the coating were collected using a simulated rain process developed at NIST, and the collected runoff specimens were measured using inductively coupled plasma optical emission spectroscopy to determine the amount of silicon released from the nanocoatings. The results demonstrated that the added silica nanoparticle solution decreased the photodegradation rate (i.e., stabilization) of the commercial PU nanocoating. Although the degradation was slower than the previous nanosilica epoxy model system, the degradation of the PU matrix resulted in accumulation of silica nanoparticles on the nanocoating surface and release to the environment by simulated rain. These experimental data are valuable for developing models to predict the long-term release of nanosilica from commercial PU nanocoatings used outdoors and, therefore, are essential for assessing the health and environmental risks during the service life of exterior PU nanocoatings.  相似文献   

5.
The degradation of a polymer coating and predicting the coating lifetime based on physical properties and distribution within the coating of the polymer binder, pigments, and fillers are economically very important. As technologies advance and allow for control of coatings at the nanoscale level, methods such as Monte Carlo can be used not only to predict the behavior of a nanodesigned coating with time but also to design coatings, such as optimizing pigment particle distributions or optimum hard and soft phase distributions of the binders in multiphase systems for maintaining the desired property with time. Erosion of the coating surface was simulated using Monte Carlo techniques where terrestrial solar flux is the initiator for polymer segment cleavage and removal. The impact on the sensitivity of the polymer adjacent to the detached polymer segment can be increased or decreased in the model based on the chemistry and surface energy of the remaining polymer matrix. Multiple phases with varying sensitivity to degradation can be modeled. The Monte Carlo generates a statistically similar surface topography and chemistry of the coating. The results of the Monte Carlo model are compared to measurable properties such as gloss, fracture toughness, and wetting contact angle, using various published correlations of the property to the surface topology. The simulated properties change through the life-time of the coating in ways that are consistent with observed behavior. Apparently, complicated changes in many properties can be described by the repeated application of simple, random processes. Presented at the 79th Annual Meeting of the Federation of Societies for Coatings Technology, October 28–November 1, 2002, in New Orleans, LA.  相似文献   

6.
Novel, environmentally friendly antimicrobial coatings containing tethered biocide moieties derived from the ubiquitous biocide, triclosan, were synthesized and characterized using a high-throughput workflow. Triclosan was first modified with an acrylate functionality and, subsequently, copolymerized with hydroxyethyl acrylate and butyl acrylate using conventional free radical polymerization to form an array of acrylic polyol terpolymers. The polyols were characterized using nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and gel permeation chromatography. Arrays of urethane coatings were produced from the array of acrylic polyol terpolymers and, subsequently, characterized using parallel dynamic mechanical thermal analysis, surface energy measurements, and various biological assays. The results of the biological assays showed that the coatings were effective toward inhibiting Staphylococcus epidermidis biofilm retention without leaching triclosan or other toxic components from the coating. The level of antimicrobial activity was found to increase with the content of triclosan moieties incorporated into the coating matrix. These results indicate that triclosan moieties tethered to a polymer matrix can impart antimicrobial properties via a contact-active, nonleaching (i.e., environmentally friendly) mechanism. Since S. epidermidis is one of the primary microorganisms associated with infection and failure of implanted medical devices, such as prosthetic heart valves, urinary catheters, and a variety of orthopedic implants, these coatings may have good potential for commercialization in some of these applications. This paper was awarded First Place in the 2008 Roon Awards competition, held as part of the FutureCoat! conference, sponsored by the Federation of Societies for Coatings Technology, in Chicago, IL, on October 14–16, 2008.  相似文献   

7.
Laser scanning confocal microscopy (LSCM) has been used to characterize the changes in film thickness and local surface morphology of polymer coatings during the UV degradation process. With the noninvasive feature of LSCM, one can obtain thickness information directly and nondestructively at various exposure times without destroying the specimens or deriving the thickness values from IR measurement by assuming uniform film ablation. Two acrylic polymer coatings were chosen for the study, and the physical and chemical changes of the two systems at various exposure times were measured and analyzed. Those measurable physical changes caused by UV exposure include film ablation, formation of pits and other surface defects, and increases in surface roughness. It was found in both coatings that changes in measured film thickness by LSCM were not correlated linearly to the predicted thickness loss using the changes in the CH band obtained by the Fourier Transform Infrared (FTIR) spectroscopy measurements in the later degradation stages. This result suggested it was not a uniform film ablation process during the UV degradation. At later stages, where surface deformation became severe, surface roughness and profile information using LSCM were also proven to be useful for analyzing the surface degradation process Presented at the 81st Annual Meeting of the Federation of Societies for Coatings Technology, November 13–14, 2004 in Philadelphia, PA.  相似文献   

8.
Surface properties of a polymeric coating system have a strong influence on its performance and service life. However, the surface of a polymer coating may have different chemical, physical, and mechanical properties from the bulk. Significant progress has been made during the last three decades in the improvement of coating on materials. It has been established that polymeric blends have great potential in replacing economically many conventional materials because of their high specific strength. It is needed today, constantly, to improve the surface finish of any material for efficiency and shiny appearance in the severity of working environment. In packaging, materials having longer service lives and those are less corrosive are highly used. The effect of polymer based coating on the paper material improves its mechanical properties and flame resistance. Effect of flame retardant polymer coating illuminates the surface of the sheet. Important application of the material sheets will be for corrosion receptivity and humidity resistance of this material will certainly improve. Blends of PMM/PVDF are mainly used to improve piezoelectric properties of PVDF. In the present study we report the measurement of surface properties of thin layer of polymer blend coated on the cardboard sheet substrate material. Polymer blend solutions of PMMA/PVDF was prepared at 90/10 (w/w) proportions in miscible solvent of toluene and DMF. Thin film was prepared on the surface of cardboard by dipping the cardboard material in the solution. Thickness of the dried polymer coated paper sheet was measured to see uniformity of coating and for different concentrations. Surface properties such as flexibility index, yellowness, and gloss reflectance were also measured. The study on these polymer coated paper will help in improving the surface property of paper as well as its use in packaging. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4167–4171, 2006  相似文献   

9.
Poly-ether-ether-ketone (PEEK) is one of the high-performance thermoplastics. It is being increasingly used for many industrial applications due to its excellent properties. In this paper, a flame spraying technique is used to deposit PEEK coating on 304L stainless substrates. CO2 and Nd:YAG laser treatments are chosen to remelt the as-sprayed polymer coating to get a dense coating. The microstructures of the as-sprayed and remelted coatings are characterized by SEM and XRD. The results show that both CO2 and Nd:YAG lasers are suitable for densifying the PEEK coating on stainless substrate. However, the remelted coatings present different crystalline structure due to their laser processing parameters. Hardness measurements, tribological and scratch tests are conducted to characterize the mechanical properties of remelted coating. The coatings’ mechanical properties are correlated with their structures.  相似文献   

10.
Polymer molecular relaxation, or ‘physical aging’, is a very important influence on permeability and mechanical properties of any polymer below its glass transition. ‘Physical aging’ occurs as even an unstressed polymer gradually relaxes towards its equilibrium conformation. This and the shorter term response to stress happen over periods much longer than the typical cycle of an accelerated weathering test, thus important properties of a polymeric coating may be affected by the difference in frequency between natural and artificial exposures, in addition to other factors. Further, ‘physical aging’ is affected by chemical changes to the polymer network caused by the degradation during a weathering exposure. In this investigation, purely physical aging was compared with the effect of concurrent chemical degradation by measuring ‘enthalpy recovery’ and mechanical stress relaxation at a variety of temperatures and at various stages during accelerated weathering exposure. The effect of physical aging was quite apparent in both an epoxy-polyamide coating and a polyester-urethane coating. Changes in physical aging behaviour during degradation were different for the two coatings, which points to further reasons for discrepancy between accelerated weathering and natural exposure.  相似文献   

11.
The synthesis of acrylic latexes filled with silica nanoparticles have been developed in the present work. Moreover, a exhaustive study of the influence of the synthesis conditions on the latex characteristics has been performed. The latex particles morphology has been observed using transmission electron microscopy (TEM) showing a raspberry morphology. Completely transparent coatings have been synthesized using these latexes and a high dispersion degree of the nanosize SiO2 into the polymer matrix has been achieved. These characteristics of these latexes make especially suitable for construction applications (i.e., to protect natural stone). Nanoindentation tests have been carried out in order to measure the mechanical properties of the coating. These tests showed an increment of the elastic modulus and hardness, improving mechanical properties when SiO2 is added to the polymer matrix.  相似文献   

12.
《Ceramics International》2022,48(15):21305-21316
Sintered carbides are promising materials for surfaces that are exposed to extreme wear. Owing to their high service load, ceramic-based thin films are coated on carbides using different techniques. In this study, non-toxic and cobalt-free powder metallurgy-sintered carbide samples were coated with TiN, TiAlN, CrAlN, and TiSiN ceramic-based thin film coatings by cathodic arc physical vapor deposition. The microstructure (phase formation, coating thickness, surface roughness, and topography), mechanical properties (hardness, modulus of elasticity, and plasticity indices), and tribological properties (nanoscratch and wear behavior) of the thin film coatings were investigated. No cracks or defects were detected in these layers. The ceramic-based ternary nitride thin film coatings exhibited better mechanical performance than the TiN coating. The TiN thin film coating had the highest average surface roughness, which deteriorated its tribological performance. The ternary nitride thin film coatings exhibited high toughness, while the TiN thin film coating exhibited brittle behavior under applied loads when subjected to nanoscratch tests. The wear resistance of the ternary nitride coatings increased by nearly 9–17 times as compared to that of the TiN coating and substrate. Among all the samples investigated, the substrate showed the highest coefficient of friction (COF), while the TiSiN coating exhibited the lowest COF. The TiSiN thin film coating showed improved mechanical and tribological properties as compared to other binary and ternary nitride thin film coatings.  相似文献   

13.
A systematic four-stage investigation of eight unpigmented coating formulations, including three vinyl, two polyurethanes, and three epoxy systems was done to provide baseline structural information upon which an improved understanding and an optimization of protective coatings can be founded. First, the results from dynamic mechanical measurements are provided and discussed for the base polymer component in each coating system. Second, the effects of humidity on the dynamic mechanical properties of these base polymers were determined at room temperature. The extent of property degradation was monitored by calculating the Tg depression with increased humidity, assuming a temperature–humidity superposition. The extent of degradation, as monitored by the Tg, was found to correlate directly with the level of hydrogen bonding in these coatings. Third, the influence of typical coating additives (a TCP plasticizer and a rosin hardener) on the properties of two of the vinyl coating systems was investigated. In the final stage, the synergistic effects of absorbed moisture and these additives on the coatings properties were investigated at room temperature. Increases in the concentration of these additives was found to magnify the degradation effect of increased humidity. This magnified degradation has been assigned to increased water absorption with increases in the concentration of either of these additives.  相似文献   

14.
Nanoparticle-filled polymeric coatings have attracted great interest in recent years because the incorporation of nanofillers can significantly enhance the mechanical, electrical, optical, thermal, and antimicrobial properties of coatings. Due to the small size of the fillers, the volume fraction of the nanoparticle/polymer interfacial area in nano-filled systems is drastically increased, and the interfacial region becomes important in the performance of the nano-filled system. However, techniques used for characterizing nanoparticle/polymer interfaces are limited, and thus, the mechanism by which interfacial properties affect the photostability and the long-term performance of nano-filled polymeric coatings is not well understood. In this study, the role of the nanoparticle/polymer interface on the ultraviolet (UV) stability of a nano-ZnO-filled polyurethane (PU) coating system was investigated. The effects of parameters influencing the particle/polymer interfacial properties, such as size, loading, surface modification of the nanoparticles, on photodegradation of ZnO/PU films were evaluated. The nature of the interfacial regions before and after UV exposures were characterized by atomic force microscopy (AFM)-based techniques. Results have shown that the interfacial properties strongly affect chemical, thermo-mechanical, and morphological properties of the UV-exposed ZnO/PU films. By combining tapping mode AFM and novel electric force microscopy (EFM), the particle/polymer interfacial regions have been successfully detected directly from the surface of the ZnO/PU films. Further, our results indicate that ZnO nanoparticles can function as a photocatalyst or a photostabilizer, depending on the UV exposure conditions. A hypothesis is proposed that the polymers in the vicinity of the ZnO/PU interface are preferentially degraded or protected, depending on whether ZnO nanoparticles act as a photocatalyst or a photostabilizer in the polymers. This study clearly demonstrates that the particle/polymer interface plays a critical role in the photostability of nano-filled polymeric coatings.  相似文献   

15.
This paper analyzes the chemical composition of the interface resulting from the application of an organic coating (lacquer) containing phosphating reagents on galvanized steel, galvanneal, and galfan substrates and its stability after short periods of exposure to condensing humidity and UV light (UVCON test). X-ray photoelectron spectroscopy (XPS) has shown that the lacquer drying process gives rise to a number of discontinuities on the lacquer surface (pores) exposing the phosphate layer formed on the original metallic coating surface. It is interesting to note the detection of fluoride and nitrite ions and phosphoric acid not combined with zinc (perhaps as HPO4 2− and H2PO4 ) on the lacquered surfaces before testing, which suggests a tendency of these species to concentrate on the outer surface of the phosphate layer or at the lacquer-phosphate layer interface (in zones covered by the lacquer). After one day of exposure to the UVCON test, XPS reveals the disappearance of the fluoride and nitrite ions and of the free phosphoric acid. After 15 days of exposure to the UVCON test, the carbon content is seen to have decreased considerably, while the zinc, phosphorus, and titanium contents have risen. The low atomic percentages of carbon (only moderately higher than those obtained with the coatings in bare state) and Zn/P atomic ratios close to 1.5 suggest the removal of a very substantial percentage of the lacquer, leaving the zinc phosphate formed on the surface of the different metallic coatings exposed. This quick and significant drop in the lacquer content barely seems to have a repercussion on the degradation of the metallic substrate during the UVCON test, since its visual aspect remains unaltered.  相似文献   

16.
高分子表面金属化是对高分子材料表面进行改性处理使其具有良好物理性能、力学性能及金属光泽的表面技术,广泛应用于高分子导电、薄膜修饰、电磁屏蔽等领域。本文综述了高分子表面金属化的两大类技术方法,即干法镀膜和湿法镀膜。介绍了几种典型的表面处理技术,如真空镀膜、喷涂金属转移法、化学镀、化学还原金属化以及电镀,并总结了它们的技术特点以及在科学研究和工业生产应用中的难点。阐明了从传统电镀技术发展而来的高分子表面直接电镀工艺的优势,直接电镀工艺省去了电镀前的活化工序,缩短了工艺时间,避免了电镀前工艺对环境造成的污染,成为高分子表面金属化技术发展的新方向。  相似文献   

17.
The surface of coatings and plastics is the first target in any degradation process initiated by ultraviolet (UV) radiation or mechanical stress (via scratch and abrasion). Surface damage can lead to changes in optical, morphological, and mechanical properties and can result in pathways for ingress of moisture and corrosive agents. Current test methods for monitoring performance of protective coatings focus on chemical properties and optical properties, such as color and gloss measurements, or invasive tests such as abrasion and cross-cut adhesion. In this study, a macroscopically nondestructive performance protocol using nanoindentation metrology via a well-controlled scratch test was applied to evaluate the scratch resistance and monitor the surface mechanical property changes in a protective coating under accelerated weathering. Polyurethane (PU) coatings with different polyol compositions were chosen for this study. Coating specimens were exposed to high-intensity UV radiation at 55°C and 75% RH conditions. Exposed specimens were removed at specified UV exposure times for surface modulus/hardness and scratch resistance characterization via nanoindentation and scratch test. The effect of polyol type and UV radiation dose on the scratch damage (scratch morphology) was investigated and correlated with the surface hardness and modulus of the materials.  相似文献   

18.
研究了在酸、碱、盐和 UV辐照等环境作用下水性聚偏氟乙烯型( PVDF)反射隔热涂层性 能的时变规律。使用扫描电镜( SEM)和能谱分析表征了涂层微观形貌及断面中的氟元素分布, 对涂层在经各类环境作用前后的明度、光泽、色差、力学性能和反射隔热性能进行了测试,并使用 ATR-FTIR对表面涂层的官能团变化进行了分析。结果表明:氟元素在涂层树脂基体中的垂向分布较均匀; 56 d UV处理会提升涂层光泽;经酸、盐和 UV处理后,涂层明度未见明显变化且色差较小,涂层断裂伸长率降低且抗拉强度提升,最高达 8.4 MPa,反射隔热性能指标未见明显变化;碱处理后的涂层出现明显的色差和明度下降,涂层变脆且抗拉强度下降,同时太阳光反射比由 0.70降至 0.65。ATR-FTIR分析结果表明:涂层的耐酸、盐和 UV能力较强,但在碱性条件下存在含氟组分的降解破坏情况。  相似文献   

19.
In recent years there has been a remarkable growth in coatings technology, yet polymer‐coated metals still corrode when they are exposed to severe environments. If the effectiveness of polymer coatings is to be increased, it is essential to understand the microstructure of polymer coating film and the changes that occur to the film upon environmental exposure, and relate the changes to the protective performance of coatings. The degradation of a polyester immersed in alkali solution has been investigated using a number of analytical techniques including atomic force microscopy (AFM), liquid chromatography/mass spectrometry (LC/MS), and Fourier transform infrared spectroscopy (FTIR). AFM was used to characterize the heterogeneous phase in the unexposed films and films exposed to alkali solution. Film roughness was found to increase with aging of the film in alkali medium. Total organic carbon analysis of the leached aqueous medium showed the presence of organic compounds, suggesting a chemical degradation of the film in alkali medium. FTIR analysis of the leached medium showed evidence for the formation of carboxylate species upon degradation of polyester film in alkali solution, while LC/MS analysis of the leached medium confirmed the presence of isophthalic acid and sodium isophthalate. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2454–2463, 2000  相似文献   

20.
The objective of study was to investigate the influence of UV irradiation on morphological changes of a polymeric surface and its electrical properties. In the presented investigation thin poly(methyl methacrylate) (PMMA) film was applied onto iron substrate by solution casting method. UV-C irradiation in range of 200–280 nm was used as a deteriorative factor to induce polymer degradation. Atomic force microscopy (AFM) method was employed to study surface topography of the PMMA coatings before and after exposure to UV-illumination. Photo-induced changes in the polymer surface taking form of microcracks were illustrated by AFM images. In order to support results obtained with AFM method, electrochemical impedance spectroscopy (EIS) measurements were conducted. The authors chose this technique to confirm whether the changes on UV-exposed PMMA surface observed on AFM images could indicate potential sites of the polymer coating long before serious damage could occur. Both methods EIS and AFM were used in order to provide information about durability of PMMA film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号