首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hexagonal K2W4O13 nanorods have been synthesized by hydrothermal treatment of the WO3 x H2O precipitate at 180 degrees C in the presence of K2SO4. The K2W4O13 nanorod single crystals of approximately 12 nm in diameter and tens to few hundreds nm long with the principal axis along the (001) direction were obtained when hydrothermal treatment was conducted in the presence of sufficient amount of K2SO4 while shorter nanorods with the same preferred orientation were obtained when less amount of K2SO4 was employed. On the other hand, square platelets of approximately 100 nm wide were obtained when prepared in the absence of the K2SO4. The important role of K2SO4 on morphological control of the hydrothermal products was explained based on selective adsorption of the sulfate ions on the crystal planes parallel to the (001) direction retarding the growth of these faces. The nanorod film showed satisfactory electrochromic property and can be used as a promising material in electrochromic application.  相似文献   

2.
Bismuth ammonium citrate complex (C24H20Bi4O28 x 6NH3 x 10H2O) interacted with sodium sulphide (Na2S) in presence of beta-cyclodextrin (beta-CD) yielding Bi2S3 nanospheres. Solvothermal treatment of the bismuth complex and dimethyl sulphoxide (DMSO) produced Bi2S3 nanorods. Reaction conditions were optimized to investigate the morphology evolution of the product. Electrical properties of the nanorods were monitored in details.  相似文献   

3.
Two-dimensional monoclinic WO(3) nanoplates with high specific surface areas are synthesized through a novel conversion process using tungstate-based inorganic-organic hybrid micro/nanobelts as precursors. The process developed involves a topochemical transformation of tungstate-based inorganic-organic hybrid belts into WO(3) nanoplates via an intermediate product of H(2)WO(4) nanoplates, utilizing the similarity of the W-O octahedral layers in both H(2)WO(4) and WO(3). The as-obtained WO(3) nanoplates show a single-crystalline nanostructure with the smallest side along the [001] direction. The WO(3) nanoplates are 200-500 nm x 200-500 nm x 10-30 nm in size, and their specific surface areas are up to 180 m(2) g(-1). Photocatalytic measurements of visible-light-driven oxidation of water for O(2) generation in the presence of Ag(+) ions indicate that the activity of the as-obtained WO(3) nanoplates is one order of magnitude higher than that of commercially available WO(3) powders.  相似文献   

4.
以六水氯化锶、氢氧化钠和尿素为原料,采用尿素水解均相沉淀法利用表面活性剂CTAB所形成的棒状胶束为软模板定向诱导制备出了晶形规整的碳酸锶纳米棒,利用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对其进行了表征。结果表明,碳酸锶纳米棒呈规则的直线状,长度在6μm以上,平均粒径约80nm,长径比达到70以上。对碳酸锶纳米棒的形成机理进行了初步的研究,最后进一步讨论了CTAB用量对粒子形貌的影响情况。  相似文献   

5.
Senthil K  Yong K 《Nanotechnology》2007,18(39):395604
Stoichiometric tungsten oxide (WO(3)) nanorods are synthesized on tungsten (W) substrates by a high-temperature, catalyst-free, physical deposition process and by subsequent annealing in oxygen atmosphere. Tungsten oxide nanorods are grown by thermal evaporation of WO(3) powder at elevated temperature in a tube furnace. XRD, TEM and XPS analysis shows that the as-grown nanorods are single crystalline and non-stoichiometric (WO(x)). Annealing of WO(x) nanorods at 700?°C under oxygen atmosphere has led to the formation of stoichiometric WO(3) as evidenced by XRD, XPS and Raman analysis.  相似文献   

6.
Several different synthetic methods have been developed to fabricate tungsten oxide (WO(3)) nanostructures, but most of them require exotic reagents or are unsuitable for mass production. In this paper, we present a systematic investigation demonstrating that arc discharge is a fast and inexpensive synthesis method which can be used to produce high quality tungsten oxide nanostructures for NO(2) gas sensing measurements. The as-synthesized WO(3) nanostructures are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), finger-print Raman spectroscopy and proton induced x-ray emission (PIXE). The analysis shows that spheroidal-shaped monoclinic WO(3) crystal nanostructures were produced with an average diameter of 30?nm (range 10-100?nm) at an arc discharge current of 110?A and 300?Torr oxygen partial pressure. It is found that the morphology is controlled by the arc discharge parameters of current and oxygen partial pressure, e.g.?a high arc discharge current combined with a low oxygen partial pressure results in small WO(3) nanostructures with improved conductivity. Sensors produced from the WO(3) nanostructures show a strong response to NO(2) gas at 325?°C. The ability to tune the morphology of the WO(3) nanostructures makes this method ideal for the fabrication of gas sensing materials.  相似文献   

7.
High purity hydroxyapatite (HAp) nanorods were synthesized by hydrothermal technique using Ca(NO3)2 x 4H2O and (NH4)2HPO4 as starting materials in a hydrothermal reactor at 150-200 degrees C for 12-24 h with pH6 and pH9.5, respectively. The prepared HAp nanorods were characterized by XRD, FTIR, and TEM techniques. The XRD results confirmed the formation of pure phase of HAp at pH9.5. With increasing temperature and time, the crystallinity of the HAp was increased, showing the hexagonal structure of HAp with the lattice parameter a in a range of 1.144-1.148 nm and c of 0.723-0.724 nm. The crystalline sizes of the powders were found to be 44-85 nm as evaluated by the XRD line broadening technique. The chemical compositions of the HAp nanorods were characterized by FTIR spectroscopies. The peaks of the phosphate carbonate and hydroxyl vibration modes were observed in the FTIR spectra for all the samples. The morphology of the HAp was nanorods of diameter less than 100 nm, as revealed by TEM. Increasing the temperature and time resulted in the transition from polycrystalline to single crystalline phase of the HAp, as clearly confirmed by the analysis of TEM diffraction patterns.  相似文献   

8.
用种子生长法合成小型金纳米棒,改变合成参数可调控其形貌和性能。使用紫外-可见-近红外分光光度计和透射电子显微镜(TEM)测试和观察了金纳米棒的消光特性和形貌,研究了AgNO3、十六烷基三甲基溴化铵(CTAB)和籽晶的用量对金纳米棒的形貌和性能的影响。结果表明:在不同条件下制备的金纳米棒具有良好的重现性。在(0.01 mol/L) AgNO3用量为0.035 mL、(0.1 mol/L) CTAB用量为11 mL、籽晶用量为1.1 mL的最佳条件下合成的金纳米棒,其长径比约为3.8,平均长度约为34 nm,形貌均匀性和分散性良好。这种小型金纳米棒可用于检测残留物福美双(Thiram)。  相似文献   

9.
Polycrystalline nanorods of CdS were successfully prepared by a novel solvothermal method using simple initial materials of sulfur and Cd(Ac)2.2H2O in pyridine at 160 degrees C. TEM, HRTEM and SAED analyses reveal that the polycrystalline nanorods with the lengths from 400 to 1000 nm and a mean diameter of ca 40 nm are assembled with highly oriented quantum dots of face-centered cubic CdS. The chemical reactions under the current solvothermal conditions involve the first reduction of sulfur by acetate anions to S2-, and subsequently the formation of intermediate complex CdS(Py)0.5 with nanorod-like morphology, as well as finally prolonged solvothermal process to the formation of the polycrystalline nanorods. Therefore, a new intermediate-sacrificed mechanism to direct the formation of cubic CdS polycrystalline nanorods was proposed.  相似文献   

10.
Novel reverse micelles of high CTAB concentration were successfully developed to synthesize MnOOH (manganese oxyhydroxide) nanorods with uniform diameters of about 10 nm and up to 200 nm in length under mild solution conditions and Mn3O4 nanorods with the same morphology could be obtained by calcining the precursors at 450 degrees C. The morphology and microstructure of the nanorods were investigated by transmission electron microscopy (TEM and HRTEM), XRD and TGA. The results showed that the concentration of CTAB was a key factor for the formation of MnOOH nanorods and only above 0.2 M the nanorods could be obtained. Moreover, the length of nanorods increased with the increase of CTAB concentration, while the diameter of nanorods retained steadily. In this way, the length of nanorods could be easily controlled from tens nanometers to hundreds nanometers by increasing the CTAB concentration from 0.35 M to 1.25 M. In addition, in our experiment the products were almost entirely rod-like shape, which indicated this method should be suitable for mass-producing.  相似文献   

11.
制备了具有有序孔洞多孔阳极氧化铝 (AAO) , 并以之为模板通过溶胶2凝胶法制备高度取向的WO 3·H 2O纳米线阵列 , 用 X射线衍射、XPS、 扫描电镜 (SEM) 和比表面积仪进行表征。结果表明 : WO 3·H 2O纳米线线径与 AAO模板的孔径一致 , 且分布均匀 , 线径为 26 nm , 线长为 1. 1μm; 与相同条件下用玻纤布作载体制备的 WO 3·H 2O膜相比 , 其平均晶粒小 , 低密度 , 高比表面积。将催化剂 WO 3·H 2O/ AAO与 WO 3·H 2O/玻纤布两者分别对气相甲醛进行光催化降解反应以评价它们的光催化活性 , 得出 WO 3·H 2O纳米线阵列光催化降解气相甲醛反应速率常数大约是 WO 3·H 2O/玻纤布的 3. 4 倍 , 说明以 AAO 为模板制备的 WO 3·H 2O纳米线阵列具有更高的光催化活性。  相似文献   

12.
制备了具有有序孔洞多孔阳极氧化铝 (AAO) , 并以之为模板通过溶胶2凝胶法制备高度取向的WO 3·H 2O纳米线阵列 , 用 X射线衍射、XPS、 扫描电镜 (SEM) 和比表面积仪进行表征。结果表明 : WO 3·H 2O纳米线线径与 AAO模板的孔径一致 , 且分布均匀 , 线径为 26 nm , 线长为 1. 1μm; 与相同条件下用玻纤布作载体制备的 WO 3·H 2O膜相比 , 其平均晶粒小 , 低密度 , 高比表面积。将催化剂 WO 3·H 2O/ AAO与 WO 3·H 2O/玻纤布两者分别对气相甲醛进行光催化降解反应以评价它们的光催化活性 , 得出 WO 3·H 2O纳米线阵列光催化降解气相甲醛反应速率常数大约是 WO 3·H 2O/玻纤布的 3. 4 倍 , 说明以 AAO 为模板制备的 WO 3·H 2O纳米线阵列具有更高的光催化活性。   相似文献   

13.
The luminescent complex terbium (III)-trimesic acid (TMA)-1,10-phenanthroline (phen) nanorod was synthesized in the polyvinylpyrrolidone (PVP) matrix by a co-precipitation method. The chemical formula of the synthesized complex was speculated to be PVP/TbL(phen)0.5 x 7H2O by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), elemental analysis and Fourier-transform infrared spectroscopy (FTIR). The X-ray diffraction pattern (XRD) of PVP/TbL(phen)0.5 x 7H2O indicated that it was a crystalline complex. The transmission electron microscopy (TEM) result showed that the complex was nanorods with diameters of about 80-100 nm. The thermogravimetric curve (TGA) analysis exhibited that the complex has good stability below 400 degrees C. UV-Vis diffuse reflectance spectra showed that there is a maximum absorption at 300 nm. The photoluminescence analyses (PLA) showed that the synthesized complex emitted the characteristic green fluorescence of Tb (III) ions under ultraviolet light excitation. The emission peaks of PVP/TbL(phen)0.5 x 7H2O at 488, 542, 581, and 618 nm using 278 nm as exciting wavelength can be assigned to the 5D4 --> 7F6, 5D4 --> 7F5, 5D4 --> 7F4, and 5D4 --> 7F3 electron transitions of the Tb3+ ions, respectively.  相似文献   

14.
A novel AgBr/WO(3) composite photocatalyst was synthesized by loading AgBr on WO(3) substrate via deposition-precipitation method and characterized by XRD, SEM and DRS. The as-prepared AgBr/WO(3) was composed of monoclinic WO(3) substrate and face-centered cubic AgBr nanoparticles with crystalline sizes less than 56.8 nm. AgBr/WO(3) had absorption edge at about 470 nm in the visible light region. The optical AgBr content in AgBr/WO(3) was 0.30:1 (Ag/W) at the corresponding apparent rate, k(app), of 0.0160 min(-1) for MO degradation. The highest k(app) was 0.0216 min(-1) for 4 g/L catalyst. The OH acted as active species. Addition of H(2)O(2) within 0.020 mmol/L can efficiently trap electrons to generate more OH and further improved photocatalytic activity of AgBr/WO(3).  相似文献   

15.
Nanorods of nickel and copper oxalate have been synthesized by the reverse micellar route. Powder X-ray diffraction studies and thermo gravimetric analysis confirms the formation of monophasic NiC2O4 x 2H2O and CuC2O4 x H2O. Transmission electron microscopy shows that the as prepared nanorods of nickel and copper have diameter of 250 nm and 130 nm while the length is of the order of 2.5 microm and 480 nm respectively. The aspect ratio of the nanorods could be modified by changing the solvent. The nickel oxalate nanorods appear very smooth with uniform length while the copper oxalate nanorods appear to be corrugated. Nickel oxalate dihydrate nanorods show an antiferromagnetic transition at T(N) = 34 K while the copper based nanorods show temperature independent paramagnetism.  相似文献   

16.
Aqueous precipitation method has been used to synthesize lanthanide orthophosphates LnPO4 x nH2O (Ln = La, Ce, Gd, Tb, Dy) with high purity and yield. It has been shown by XRD, TGA, and FTIR characterization that the as-synthesized samples are the LnPO4 hydrates (LnPO4 x nH2O) with hexagonal rhabdophane-type structure. The X-ray diffraction peaks and absorption of PO4(3-) groups show a systematic shift from LaPO4 x nH2O to DyPO4 x nH2O due to the effect of lanthanide ionic contraction. The value of n in LnPO4 x nH2O depends on the lanthanide element and synthetic condition. Field-emission scanning electron microscopy observations show the morphology of as-synthesized samples, which consist entirely of nanorods/nanowires with diameters of 30-100 nm and lengths ranging from several hundreds of nanometers to several micrometers. The anisotropic growth of crystals should be responsible for the formation of nanorods/nanowires, which is related to the hexagonal crystal structure.  相似文献   

17.
利用水热合成法,以TiO2(锐钛矿)粉末、钴盐为原料,在NaOH溶液中,180℃水热合成了Co掺杂的钛酸盐纳米棒.将Co掺杂的钛酸盐纳米棒在700℃氩气氛下烧结2 h转化为锐钛矿结构Co掺杂TiO2纳米棒.利用x射线衍射仪(XRD)、扫描电子显微镜(SEM)、紫外一可见分光光度计和超导量子干涉磁强计(SQUID)等对Co掺杂的钛酸盐和Ti0,纳米棒的微结构、形貌和性能进行了表征.研究结果表明,Co掺杂的钛酸盐和未掺杂的纯钛酸盐H2Ti3O7具有相同的层状结构,在样品中未监测到Co杂质(如钴的氧化物和氢氧化物)的峰.Co掺杂的钛酸盐纳米棒表面光滑,直径大约为90 nm~120 nm,长度约1 μm,co的掺杂对纳米棒形貌没有明显影响.Co掺杂后的钛酸盐纳米棒与未掺杂的钛酸盐纳米棒相比,其紫外-可见吸收光谱的吸收峰明显红移,带宽变窄.未掺杂的纯钛酸盐纳米棒的带宽为3.2 eV,与TiO2相同;Co掺杂的钛酸盐纳米棒的带宽为2.6 eV,明显变窄.同时,Co掺杂的钛酸盐和TjO2纳米棒在300 K均具有铁磁性,且其磁化强度大小基本一致,矫顽力也相同.  相似文献   

18.
采用水热法成功制备了Er~(3+)/Yb~(3+)双掺杂的NaGd(WO_4)_2纳米粉体,研究了不同络合剂、水热温度对样品形貌和结构的影响。测量了不同Er~(3+)掺杂浓度样品的可见上转换和近红外发射光谱。结果表明:在980nm LD激发下,可观测到样品强烈的绿色上转换发光,对应Er~(3+)的~2H_(11/2)→~4I_(15/2)(530nm)和~4S_(3/2)→~4I_(15/2)(552nm)跃迁,以及较弱的红色上转换和近红外发光,分别对应Er~(3+)的~4F_(9/2)→4I15/2(656nm)和~4I_(13/2)→~4I_(15/2)(1 532nm)跃迁。且随着Er~(3+)掺杂浓度的增加,样品的上转换红绿光和1.54μm附近的近红外光均呈现出先增大后减小的趋势。样品的激发和发射光谱显示,在378nm处的激发峰最强,对应Er~(3+)的~4I_(15/2)→~4 G_(11/2)能级跃迁,最强发射峰位于552nm。根据泵浦功率与发光强度的关系可以得出,红光和绿光的发射主要为双光子吸收过程,但红光还包含了一定的单光子吸收成分。  相似文献   

19.
In this work, TiO2 nanorods with uniform diameter of about 100 nm and a length of several micrometers were successfully prepared by the sol-gel template method. Also the influence of molar ratios of precursor on the morphology and structure of TiO2 nanorods has been investigated. The prepared samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results indicated that the TiO2 nanorods were crystallized in the anatase and rutile phases, after annealing to 400-700℃ up to 2 h.  相似文献   

20.
In this work, PbS nanocubes and nanorods were fabricated via a facile hydrothermal method without using any template and surfactant. The structure and morphology of as-prepared PbS nanocrystals were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). It was found that the anisotropic structure of PbS nanorods were composed of numerous assembled nanocubes, which had an uniform morphology with the mean diameters of about 100-200 nm and lengths of 0.5-7 μm. Furthermore, a possible growth mechanism was proposed to explain the formation of the nanorods on the basis of the time-dependent experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号