首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, preparation of Ga-doped zinc oxide (GZO) nanoparticles by a polymer pyrolysis method is reported. The pyrolysis behaviors of the polymer precursors prepared via the in situ polymerization of metal salts and acrylic acid are analyzed using thermalgravity-differential scanning calorimetry (TG-DSC) techniques. Then, the structural characteristics of the products are studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is revealed by the results that the GZO nanoparticles calcined at 600 °C show good crystallinity with the wurtzite structure. GZO nanoparticles doped with 4 mol% Ga have a mean particle size of 26 nm with spherical-like morphology. Electrical resistivity measurement shows that, before and after high temperature annealing under H2 atmosphere, the resistivity of the GZO nanoparticles is decreased by one and four orders in magnitude, respectively, compared with the pure ZnO nanoparticles. In addition, due to its versatility, this in situ polymer pyrolysis method can be easily extended to synthesis of other n-type doped semiconductor, such as In and Al doped ZnO or Sb doped SnO2.  相似文献   

2.
In this paper, nanostructured carbon-doped titanium dioxide (TiO(2-x)Cx) has been fabricated from titanium carbide (TiC) thin film using electrochemical anodization in a solution containing fluorine ion. The resulting samples were characterized via scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), and photoelectrochemistry. The SEM images and EDX analysis indicated that a nanostructured thin film of carbon-doped titanium dioxide had been formed. The XRD pattern showed the structural change from TiC to anatase type TiO2 after annealing. A series of photoelectrochemical measurement showed an increase in photovoltage and in photocurrent for the electrode of anodized TiC sample. The results demonstrated the feasibility to process carbon doped nanostructured TiO2 through anodization promising for applications in high efficient photoelectrochemical conversion.  相似文献   

3.
Undoped and copper doped nanostructured zinc oxides were synthesized by using a series of synthetic layered material, undoped and copper doped zinc hydroxide nitrates at various molar percentages of copper (2–10) within the layers as precursors. The layered materials were heat-treated at 500 °C to produce zinc oxide nanostructures with crystallite sizes in the range of 23–35 nm. Optical studies of the nanostructured copper doped zinc oxides showed the decrease in band gap with increasing content of the doping agent, copper.  相似文献   

4.
We report on the structural and magnetic properties of nanoparticles of NiGa2O4 and 5 at.% M doped (M = Mn2+, Cu2+, Co2+, Fe3+ and Tb3+) at Ga site of NiGa2O4, synthesized by gel-combustion method. The particle size, as investigated by X-ray diffraction and transmission electron microscopy, could be fine tuned by a controlled annealing process. Weak ferromagnetism becomes significant, when the particles are in the nano regime (5-7 nm). The magnetization becomes insignificant at larger particle size ( 150 nm). Cu2+ and Tb3+ doped NiGa2O4 nanoparticles showed relatively large room temperature ferromagnetism compared to other doped (Fe, Mn and Co) and undoped NiGa2O4 samples. The weak ferromagnetism observed in the nanoparticles of NiGa2O4, which is antiferromagnetic in the bulk, is due to the surface disordered states with uncompensated spins.  相似文献   

5.
A simple and straightforward method of depositing nanostructured thin films, based on LiCl-doped TiO(2), on glass and LiNbO(3) sensor substrates is demonstrated. A spin-coating technique is employed to transfer a polymer-assisted precursor solution onto substrate surfaces, followed by annealing at 520°C to remove organic components and drive nanostructure formation. The sensor material obtained consists of coin-shaped nanoparticles several hundred nanometers in diameter and less than 50 nm thick. The average thickness of the film was estimated by atomic force microscopy (AFM) to be 140 nm. Humidity sensing properties of the nanostructured material and sensor response times were studied using conductometric and surface acoustic wave (SAW) sensor techniques, revealing reversible signals with good reproducibility and fast response times of about 0.75 s. The applicability of this nanostructured film for construction of rapid humidity sensors was demonstrated. Compared with known complex and expensive methods of synthesizing sophisticated nanostructures for sensor applications, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), this work presents a relatively simple and inexpensive technique to produce SAW humidity sensor devices with competitive performance characteristics.  相似文献   

6.
Nanoparticles of Eu(3+) doped Y(2)O(3) (core) and Eu(3+) doped Y(2)O(3) covered with Y(2)O(3) shell (core-shell) are prepared by urea hydrolysis for 3?h in ethylene glycol medium at a relatively low temperature of 140?°C, followed by heating at 500 and 900?°C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18?nm for 500 and 900?°C heated samples respectively. Based on the luminescence studies of 500 and 900?°C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu(3+) emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu(3+) concentration of 4-5?at.%. A luminescence study establishes that the Eu(3+) environment in amorphous Y (OH)(3) is different from that in crystalline Y(2)O(3). For a fixed concentration of Eu(3+) doping, there is a reduction in Eu(3+) emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu(3+) increases with increase of crystallinity.  相似文献   

7.
Conjugated polymers have been extensively applied as active materials in nanostructured platforms for optical and electrical devices. The incorporation of metal nanoparticles (NPs) into the polymer-based platform arises as a strategy to develop novel hybrid functional nanocomposites with enhanced electrical and optical properties. However, efficient and simple processing routes to produce such nanocomposites are still on demand. In this work, we present an effective route to obtain functional nanocomposites based on electrospun nanofibers coated with gold nanoparticles, displaying interesting optical and electrical properties. Polymethyl methacrylate (PMMA) electrospun nanofibers doped with poly(3-hexyl thiophene-2,5-diyl) (P3HT) were obtained by the electrospinning technique, and displayed a strong red emission centered at 650 nm assigned to P3HT. Such nanofibers were deposited on to fluorine-doped tin oxide electrodes and with modified with gold nanoparticles (AuNPs) in order to produce hybrid composite materials. The performance of electrodes modified with PMMA/P3HT-AuNPs composite material was evaluated by impedance spectroscopy and revealed an enhancement of electron transfer kinetics, which indicates it as a potential platform for optical and electrochemical (bio)sensors.  相似文献   

8.
A pyrolysis synthesis method was developed to prepare ceramic nanoparticles for the fabrication of solid oxide fuel cells. Furfuryl alcohol was used as a polymerizable solvent to dissolve metal nitrates and then polymerized into poly(furfuryl alcohol) (PFA). During the pyrolysis at 600 °C, a mixture of nitrates/PFA was converted into ceramic nanoparticles/carbon networks nanocomposite, and the carbon networks act as a barrier to prevent the aggregation of newly formed nanoparticles during particle crystallization. Dispersible nanoparticles with particle sizes ranging from 40 nm to 200 nm were obtained after burning off carbon networks in air. As an example, Ce0.8Sm0.2O1.9 nanoparticles were synthesized to prepare solid oxide fuel cells, and the fuel cells achieved maximum power densities of 444.5, 625.5 and 684 mW cm?2 at 500 °C, 550 °C and 600 °C, respectively. Our study shows that the pyrolysis synthesis method described here is promising for the effective synthesis of high quality ceramic nanoparticles.  相似文献   

9.
TiO(2) nanoparticles with controllable average diameter have been obtained by laser ablation in water. A monomode ytterbium doped fiber laser (YDFL) was used to ablate a metallic titanium target placed in deionized water. The resulting colloidal solutions were subjected to laser radiation to study the resizing effect. The crystalline phases, morphology and optical properties of the obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), x-ray energy dispersive spectroscopy (EDS) and UV-vis absorption spectroscopy. The colloidal suspensions produced consisting of titanium dioxide crystalline nanoparticles show almost perfect spherical shape with diameters ranging from 3 to 40 nm. The nanoparticles are polycrystalline and exhibit anatase as well as rutile phases.  相似文献   

10.
Mixture of europium oxide (Eu2O3) nanoparticles and spin-on glass (SOG) solution without annealing exhibited a strong room temperature photoluminescence (PL) at 610 nm. We developed a one-step synthesis to incorporate europium ions in silica thin film by mixing the Eu2O3 nanoparticles with the SOG solution and found that the weight ratio of the nanoparticles and the SOG solution was 1:5 for maximum PL. We also studied the temperature effect on the light emission of the europium doped thin film by time-of-flight secondary ion mass spectrometry (SIMS). The PL intensity of the thin film doubled after annealing. SIMS study confirmed the reduction of hydroxyl groups and explained the PL enhancement in the annealed europium doped silica thin film.  相似文献   

11.
Described herein is the effect of optical annealing on the third-order non-linear optical properties exhibited by nanostructured Al-doped ZnO thin films. The samples were synthetized by an ultrasonic spray pyrolysis method. The optical annealing process was carried out by laser pulses at 532, 835 and 1064 nm wavelengths with, ps, fs and ps pulse duration, respectively. The optical non-linearity of the films was measured by the z-scan method with three different irradiations of excitation: 100 fs at 835 nm, 120 ps at 532 nm, and 150 ps at 1064 nm. The as-grown samples showed a saturable optical absorption that evolves into two-photon absorption transitions by a picosecond optical annealing phenomenon induced at 532 nm wavelength. Potential applications for developing optical encryption functions were considered.  相似文献   

12.
阳生红  陈菲  张曰理 《材料导报》2017,31(Z1):269-272
分别采用固相烧结法及激光液相烧蚀(LAL)技术,成功制备出Co掺杂CeO_2稀磁氧化物陶瓷块体和纳米颗粒。XRD和SEM研究发现所制备的材料具有良好的结晶性和形貌。Co掺杂CeO_2稀磁氧化物陶瓷块体和纳米颗粒均为多晶立方结构,与纯立方相的CeO_2结构相同,说明Co掺杂未形成其他结构和杂相。磁性测量表明固相烧结法和激光烧蚀液相法制备的Co掺杂CeO_2样品均具有较高的室温铁磁性,且远高于文献中报道的结果。将陶瓷块材经激光烧蚀成纳米颗粒后,纳米颗粒的铁磁性与陶瓷块材保持一致。这说明激光烧蚀法制备的纳米材料可以很好地保持母材的特性,是一种很好的纳米颗粒制备方法。根据XRD和SEM研究结果,笔者认为Co掺杂CeO_2陶瓷块材及纳米颗粒的室温铁磁性是内禀性质;磁性产生的机理源于氧空位诱导的铁磁性耦合。  相似文献   

13.
High-temperature treatment of functional nanomaterials, through postsynthesis calcination, often represents an important step to unlock their full potential. However, such calcination steps usually severely limit the preparation of colloidal solutions of the nanoparticles due to the formation of sintered agglomerates. Herein, a simple route is reported to obtain colloidal solutions of calcined n-conductive antimony doped tin oxide (ATO) as well as titanium dioxide (TiO2) nanoparticles without the need for additional sacrificial materials. This is achieved by making use of the reduced contact between individual nanoparticles when they are assembled into aerogels. Following the calcination of the aerogels at 500 °C, redispersion of the nanoparticles into stable colloidal solutions with various solvents can be achieved. Although a slight degree of sintering is inevitable, the size of the resulting aggregates in solution is still remarkably small with values below 30 nm.  相似文献   

14.
Rare earth (RE) doped gallium oxide and germanium oxide micro- and nanostructures, mostly nanowires, have been obtained and their morphological and optical properties have been characterized. Undoped oxide micro- and nanostructures were grown by a thermal evaporation method and were subsequently doped with gadolinium or europium ions by ion implantation. No significant changes in the morphologies of the nanostructures were observed after ion implantation and thermal annealing. The luminescence emission properties have been studied with cathodoluminescence (CL) in a scanning electron microscope (SEM). Both β-Ga(2)O(3) and GeO(2) structures implanted with Eu show the characteristic red luminescence peak centered at around 610 nm, due to the (5)D(0)-(7)F(2) Eu(3+) intraionic transition. Sharpening of the luminescence peaks after thermal annealing is observed in Eu implanted β-Ga(2)O(3), which is assigned to the lattice recovery. Gd(3+) as-implanted samples do not show rare earth related luminescence. After annealing, optical activation of Gd(3+) is obtained in both matrices and a sharp ultraviolet peak centered at around 315 nm, associated with the Gd(3+) (6)P(7/2)-(8)S(7/2) intraionic transition, is observed. The influence of the Gd ion implantation and the annealing temperature on the gallium oxide broad intrinsic defect band has been analyzed.  相似文献   

15.
In this article, antimony-doped tin oxide (ATO) nanoparticles was synthesized by a facile polymer-pyrolysis method. The pyrolysis behaviors of the polymer precursors prepared via in situ polymerization of metal salts and acrylic acid were analyzed by simultaneous thermogravimetric and differential scanning calorimetry (TG-DSC). The structural and morphological characteristics of the products were studied by powder X-ray diffraction (XRD) and transmission electron microscope (TEM). The results reveal that the ATO nanoparticles calcined at 600 °C show good crystallinity with the cassiterite structure and cubic-spherical like morphology. The average particle size of ATO decreases from 200 to 15 nm as the Sb doping content increases from 5 mol% to 15 mol%. Electrical resistivity measurement shows that the resistivity for the 10-13 mol% Sb-doped SnO2 nanoparticles is reduced by more than three orders compared with the pure SnO2 nanoparticles. In addition, due to its versatility this polymer-pyrolysis method can be extended to facile synthesis of other doped n-type semiconductor, such as In, Ga, Al doped ZnO, Sn doped In2O3.  相似文献   

16.
Y2O3 nanoparticles doped with different concentrations of Er3+ were prepared by the co-precipitation method. X-ray diffraction and transmission electron microscopy results show that Er3+ dissolves completely in the Y2O3 cubic phase. The Er3+:Y2O3 nanoparticles are homogeneous in size and nearly spherical, and the average diameter of the particles after being calcined at 1,000 degrees C for 2 h is in the range of 40-60 nm. When Er3+:Y2O3 nanoparticles are excited under a 980 nm diode laser, there are two main emission bands: green emission centered at 562 nm corresponding to the 4S3/2/2H11/2 --> 4115/2 radiative transitions and red emission centered at 660 nm corresponding to the 4F9/2 --> 4I15/2 radiative transitions. By changing the doping concentration of Er3+ ions, the up-conversion luminescence can be gradually tuned from green to red.  相似文献   

17.
Intense excimer laser pulses, flash lamp annealing and rapid thermal annealing were used to form Si nanocrystals in thin SiO(2) layers implanted with high doses of Si ions. The pulse durations were 20?ns, 20?ms and 1?s, respectively. Laser annealing produced light sources luminescing in the wavelength range of 400-600?nm. They were attributed to the Si clusters formed as a result of the fast segregation of Si atoms from the SiO(2) network. There were no indications of nanocrystal formation in the as-implanted layers after 20?ns laser pulses; however, nanocrystals formed when, before the laser annealing, the amorphous Si nanoprecipitates were prepared in the oxide layers. Evaluations show that the crystallization may proceed via melting. A photoluminescence band near 800?nm, typical of Si nanocrystals, was found after 20?ms and 1?s anneals. Calculations revealed that the annealing times in both cases were too short to provide the diffusion-limited crystal growth if one uses the values of stationary Si diffusivity in SiO(2). This points toward the existence of a transient rapid growth process at the very beginning of the anneals.  相似文献   

18.
One-dimensional (1D) SnO2 nanowires, coated by in situ formed amorphous carbon nanotubes (a-CNTs) with a mean diameter of ca. 60 nm, were synthesized by annealing the anodic alumina oxide (AAO) filled with a sol of SnO2. X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns revealed that the prepared SnO2 nanowires exist in polycrystalline rutile structure. The coating of carbon nanotubes has some defects on the wall after the internal SnO2 nanoparticles were removed. The 1D SnO2 nanowires present a reversible capacity of 441 mAh/g and an excellent cycling performance as an anode material for lithium ion batteries. This suggests that 1D nanostructured materials have great promise for practical application.  相似文献   

19.
以普通无机盐为原料采用沉淀法制备了纳米Al2O3和SiO2.XRD分析表明样品为无定形结构,SEM分析表明得到的纳米Al2O3和SiO2均为球形颗粒,直径分别为90m和300nm.将合成的纳米材料添加至陶瓷面釉进行烧结测试,结果表明,添加纳米材料釉料的烧结温度比普通釉料的烧结温度降低了30℃,釉层性能明显得到改善,釉料良好的性能源于纳米材料较大的表面积及高的烧结活性.  相似文献   

20.
Nanocrystalline SnO2 thin films were prepared by pulsed laser deposition techniques on clean glass substrates, and the films were then annealed for 30 min from 50 to 550 degrees C with a step of 50 degrees C, respectively. The investigation of X-ray diffraction confirmed that the various SnO2 thin films were consisted of nanoparticles with average grain size in the range of 23.7-28.9 nm. Root-mean-square surface roughness of the as-prepared SnO2 thin film was measured to be 25.6 nm which decreases to 16.2 nm with thermal annealing. Electrical resistivity and refractive index were measured as a function of annealing temperature, and found to lie between 1.24 to 1.45 momega-cm, and 1.502 to 1.349, respectively. The results indicate that nearly opposite actions to root-mean-square surface roughness and electrical resistivity make a unique performance with thermal annealing temperature. The post annealing shows greater tendency to affect the structural and electrical properties of SnO2 thin films which composed of nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号