首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The human V2 vasopressin receptor belongs to the superfamily of G protein-coupled receptors believed to be anchored to the plasma membrane by seven transmembrane regions. The extracellular portion of the human V2 vasopressin receptor contains one site susceptible to N-linked glycosylation. Metabolic labeling and immunoprecipitation of the receptor expressed in transfected cells were applied to examine whether the protein was indeed glycosylated. The V2 vasopressin receptor expressed transiently was glycosylated, but glycosidase treatment to test the complexity of the sugar moiety linked to asparagine revealed that the majority of the receptor protein lacked complex carbohydrates, an indication of an improperly processed protein. This immature protein displayed a tendency to form aggregates. In contrast with these data, testing of the sugar complexity of the receptor protein synthesized in stably transfected cells identified the predominant form as an appropriately processed receptor protein. Mutagenesis of asparagine 22 to glutamine produced on expression in transfected cells a nonglycosylated receptor with ligand binding affinity and coupling characteristics almost identical to those of the wild-type form. After exposure to elevated concentrations of AVP (100 nM), the nonglycosylated form desensitized to the same extent as the wild-type receptor.  相似文献   

2.
The effects of continuous exposure of cultured cells expressing the human norepinephrine transporter (hNET) to the hNET inhibitor desipramine on hNET expression and function were studied. Exposure of HEK-293 cells transfected stably with the hNET cDNA (293-hNET cells) to desipramine for 3 days reduced the specific binding of [3H]nisoxetine in membrane homogenates in a concentration-dependent manner. The magnitude of the reductions in [3H]nisoxetine binding to hNET was dependent on the length of time of the exposure to desipramine, reaching 77% after a 21-day exposure. The reduction of [3H]nisoxetine binding returned to control levels within 72 h after a 3-day exposure to desipramine. Reductions in [3H]nisoxetine binding to hNET were accompanied by time-dependent and exposure concentration-dependent reductions in hNET protein levels as determined by western blotting. Similar to binding, hNET protein levels returned to control levels 72 h after cessation of desipramine exposure. Northern blotting indicated that exposure of 293-hNET cells to desipramine did not significantly alter hNET mRNA levels. Uptake of [3H]norepinephrine by 293-hNET cells was markedly reduced after a 3-day exposure to desipramine. However, desipramine exposure had no effect on uptake of [3H]glutamate or [3H]alanine. The present findings imply that down-regulation of the hNET in 293-hNET cells induced by desipramine results from a selective reduction in hNET protein levels, presumably a consequence of either a reduction in the translation of hNET mRNA or from an enhanced degradation of hNET protein.  相似文献   

3.
Sodium- and chloride-coupled transport of dopamine from synapses into presynaptic terminals plays a key role in terminating dopaminergic neurotransmission. Regulation of the function of the dopamine transporter, the molecule responsible for this translocation, is thus of interest. The primary sequence of the dopamine transporter contains multiple potential phosphorylation sites, suggesting that the function of the transporter could be regulated by phosphorylation. Previous work from this laboratory has documented that phorbol ester activation of protein kinase C (PKC) decreases dopamine transport Vmax in transiently expressing COS cells. In the present report, we document in vivo phosphorylation of the rat dopamine transporter stably expressed in LLC-PK1, cells and show that phosphorylation is increased threefold by phorbol esters. Dopamine uptake is also regulated by phorbol esters in these cells; phorbol 12-myristate 13-acetate (PMA) reduces transport Vmax by 35%. Parallels between the time course, concentration dependency, and staurosporine sensitivity of alterations in transporter phosphorylation and transporter Vmax suggest that dopamine transporter phosphorylation involving PKC could contribute to this decreased transporter function. Phosphorylation of the dopamine transporter by PKC or by a PKC-activated kinase could be involved in rapid neuroadaptive processes in dopaminergic neurons.  相似文献   

4.
Recently, a polyspecific organic cation transporter, hOCT1, was cloned from human liver. To date, limited studies examining the functional characteristics of the transporter have been performed. The purpose of the present study was to develop a mammalian expression system for hOCT1 and to characterize the interactions of various compounds with the cloned transporter. Lipofection was used to transiently transfect the hOCT1 plasmid DNA in a human cell line, HeLa. We tested the interaction of an array of organic cations and other compounds with hOCT1 by determining Ki values in inhibiting 14C-tetraethylammonium (TEA) transport in the transfected cells. Transient expression of hOCT1 activity was observed between 24 and 72 hr post-transfection, with maximal expression at approximately 40 hr. TEA transport was temperature dependent and saturable with Vmax and K(m) values of 2.89 +/- 0.448 nmol/mg protein/30 min and 229 +/- 78.4 microM, respectively. 14C-TEA uptake in hOCT1 plasmid DNA-transfected HeLa cells was trans-stimulated by unlabeled TEA and 1-methyl-4-phenyl-pyridinium. Organic cations, including clonidine, quinine, quinidine and verapamil (0.1 mM), significantly inhibited 14C-TEA uptake, whereas the organic anion, p-aminohippuric acid (5 mM), did not. The neutral compounds, corticosterone (Ki, 7.0 microM) and midazolam (Ki, 3.7 microM) potently inhibited 14C-TEA uptake. The Ki values of several compounds in interacting with hOCT1 differed substantially from the corresponding values for the rat organic cation transporter, rOCT1, and the human kidney-specific organic cation transporter, hOCT2, determined in previous studies. Transiently transfected HeLa cells represent a useful tool in studying the interactions and kinetics of organic cations and other xenobiotics with hOCT1 and in understanding the molecular events involved in organic cation transport.  相似文献   

5.
Parathyroid hormone (PTH) regulates calcium metabolism through a specific G protein-coupled, seven-transmembrane helix-containing receptor. This receptor also binds and is activated by PTH-related protein (PTHrP). The human (h) PTH/PTHrP receptor is a membrane glycoprotein with an apparent molecular weight of approximately 85000 which contains four putative N-glycosylation sites. To elucidate the functional role of receptor glycosylation, if any, we studied hormone binding and signal transduction in human embryonic kidney cells transfected with hPTH/PTHrP receptor (HEK-293/C-21). These cells stably express 300000-400000 receptors per cell. Inhibition of N-glycosylation with an optimized concentration of tunicamycin yielded completely nonglycosylated hPTH/PTHrP receptor (approximately 60 kDa). This receptor form is fully functional; it maintains nanomolar binding affinity for PTH- and PTHrP-derived agonists and antagonists. PTH and PTHrP agonists stimulate cyclic AMP accumulation and increases in cytosolic calcium levels. In addition, the highly potent benzophenone (pBz2)-containing PTH-derived radioligand [Nle8,18,Lys13(epsilon-pBz2),L-2-Nal23,Tyr34 3-125I)]bPTH(1-34)NH2 can photoaffinity cross-link specifically to the nonglycosylated receptor. The molecular weight (approximately 60000) of the band representing the photo-cross-linked, nonglycosylated receptor (obtained from the tunicamycin-treated HEK-293/C-21 cells) was similar to that of the deglycosylated photo-cross-linked receptor (obtained by enzymatic treatment with Endoglycosidase-F/N-glycosidase-F). Our findings indicate that glycosylation of the hPTH/PTHrP receptor is not essential for its effective expression on the plasma membrane or for the binding of ligands known to interact with the native receptor. The nonglycosylated hPTH/PTHrP receptor remains fully functional with regard to both of its known signal transduction pathways: cAMP-protein kinase A and phospholipase C-cytosolic calcium.  相似文献   

6.
Agonist-induced desensitization has been described for the A1, A2A, and A3 adenosine receptor subtypes of the G protein-coupled receptor superfamily. Desensitization of the fourth adenosine receptor subtype, the A2B adenosine receptor (A(2B)R), has not been studied extensively. We sought to determine whether the A(2B)R is subject to agonist-induced desensitization. COS 7 cells, which exhibit endogenous expression of the A(2B)R, and transfected CHO cells, which stably express a modified rat A(2B)R bearing a 5' FLAG epitope tag, were studied. Cyclic AMP (cAMP) responsiveness to an acute challenge was measured after pretreating (desensitizing) cells with the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA). Incubation with NECA resulted in hyporesponsiveness to acute agonist challenge in both COS 7 and transfected CHO cells. Desensitized cells exhibited restoration of cAMP responses after recovery for 24 hr in growth medium. Choleratoxin-induced cAMP responses were preserved in desensitized cells, and high concentrations of NECA were unable to overcome the desensitization. Membrane levels of the epitope-tagged A(2B)R were assessed by western blot in transiently transfected COS 7 cells. The expression of epitope-tagged A(2B)Rs was not different between control and desensitized cells. In northern blot analysis, levels of endogenous A(2B)R mRNA were similar in control and desensitized COS 7 cells. We conclude that the A(2B)R is subject to agonist-induced desensitization with preserved expression of A(2B)R mRNA and protein. Uncoupling of the A2B adenosine receptor from the G protein complex may contribute to the mechanism of desensitization.  相似文献   

7.
Batten disease (juvenile neuronal ceroid lipofuscinosis) is a recessive neurodegenerative disorder of childhood. The gene, CLN3, was recently identified and found to encode a novel 438 amino acid protein of unknown function. In order to gain insight into the function of the Batten disease protein (CLN3p), we investigated its subcellular localization. Protein constructs incorporating CLN3p fused to the green fluorescence protein or an eight amino acid peptide tag were transiently expressed in fibroblasts, HeLa and COS-7 cells. A juxtanuclear, asymmetric localization pattern was observed that correlated with the Golgi apparatus in all three cell types. However, a proportion of transiently transfected cells exhibited a punctate vesicular distribution throughout the cytoplasm in addition to or without the Golgi localization. In order to account for localization patterns arising from intracellular protein transport disruption due to exaggerated overexpression in transiently transfected cells, we isolated a stably transfected cell line expressing only one copy of the CLN3 -GFP DNA construct. Fluorescence and biochemical analyses using this cell line demonstrated that CLN3p is an integral membrane protein that localizes primarily in the Golgi apparatus. The functional implications of this finding are discussed.  相似文献   

8.
The class II trans-activator (CIITA) is a bi- or multi-functional domain protein which plays a critical role in the expression of MHC class II genes. We report that removal of the N-terminal 151 amino acids, encompassing all of the acidic domain but leaving intact the proline/serine/threonine-rich domain, results in a mutant protein with potent suppressive properties for MHC class II expression. HeLa cells stably or transiently transfected with mutant CIITA constructs showed up to 99% suppression of MHC class II antigen induction by IFN-gamma and marked suppression of HLA-DRA mRNA expression. Transient transfection of a B lymphoma line resulted in up to 89% reduction of constitutive MHC class II expression within 5 days and suppression of HLA-DRA mRNA synthesis.  相似文献   

9.
The coding sequence for human serum transferrin was assembled from restriction fragments derived from a full-length cDNA clone isolated from a human liver cDNA library. The assembled clone was inserted into the expression vector pNUT and stably transfected into transformed baby hamster kidney (BHK) cells, leading to secretion of up to 125 mg/L recombinant protein into the tissue culture medium. As judged by mobility on NaDodSO4-PAGE, immunoreactivity, spectral properties (indicative of correct folding and iron binding), and the ability to bind to receptors on a human cell line, initial studies showed that the recombinant transferrin, is identical to three commercial human serum transferrin samples. Electrospray mass spectrometry (ESMS), anion-exchange chromatography, and urea gel analysis showed that the recombinant protein has an extremely complex carbohydrate pattern with 16 separate masses ranging from 78,833 to 80,802 daltons. Mutation of the two asparagine carbohydrate linkage sites to aspartic acid residues led to the expression and secretion of up to 25 mg/L nonglycosylated transferrin. ESMS, anion-exchange chromatography, and urea gel analysis showed a single molecular species that was consistent with the expected theoretical mass of 75,143 daltons. In equilibrium binding experiments, the nonglycosylated mutant bound to HeLa S3 cells with the same avidity and to the same extent as the glycosylated protein and the three commercial samples. These studies demonstrate conclusively that carbohydrate has no role in this function.  相似文献   

10.
Neurotransmitter transporters couple to existing ion gradients to achieve reuptake of transmitter into presynaptic terminals. For coupled cotransport, substrates and ions cross the membrane in fixed stoichiometry. This is in contrast to ion channels, which carry an arbitrary number of ions depending on the channel open time. Members of the gamma-aminobutyric acid transporter gene family presumably function with fixed stoichiometry in which a set number of ions cotransport with one transmitter molecule. Here we report channel-like events from a presumably fixed stoichiometry [norepinephrine (NE)+, Na+, and Cl-], human NE (hNET) in the gamma-aminobutyric acid transporter gene family. These events are stimulated by NE and by guanethidine, an hNET substrate, and they are blocked by cocaine and the antidepressant desipramine. Voltage-clamp data combined with NE uptake data from these same cells indicate that hNETs have two functional modes of conduction: a classical transporter mode (T-mode) and a novel channel mode (C-mode). Both T-mode and C-mode are gated by the same substrates and antagonized by the same blockers. T-mode is putatively electrogenic because the transmitter and cotransported ions sum to one net charge. However, C-mode carries virtually all of the transmitter-induced current, even though it occurs with low probability. This is because each C-mode opening transports hundreds of charges per event. The existence of a channel mode of conduction in a previously established fixed-stoichiometry transporter suggests the appearance of an aqueous pore through the transporter protein during the transport cycle and may have significance for transporter regulation.  相似文献   

11.
The drug 3 beta-[4'-iodophenyl]tropan-2 beta-carboxylic acid methyl ester (RTI-55) is a cocaine congener with high affinity for the dopamine transporter (Kd < 1 nM). The present study characterized [125I]RTI-55 binding to membranes prepared from rat, monkey and human caudates and COS cells transiently expressing the cloned rat dopamine (DA) transporter. Using the method of binding surface analysis, two binding sites were resolved in rat caudate: a high-capacity binding site (site 1, Bmax = 11,900 fmol/mg of protein) and a low-capacity site (site 2, Bmax = 846 fmol/mg of protein). The Kd (or Ki) values of selected drugs at the two sites were as follows: (Ki for high-capacity site and Ki for low-capacity site, respectively): RTI-55 (0.76 and 0.21 nM), 1-[2-diphenyl-methoxy)ethyl]-4-(3-phenylpropyl)piperazine (0.79 and 358 nM), mazindol (37.6 and 631 nM), 2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane (45.0 and 540 nM) and cocaine (341 and 129 nM). Nisoxetine, a selective noradrenergic uptake blocker, had low affinity for both sites. Serotonergic uptake blockers had a high degree of selectivity and high affinity for the low-capacity binding site (Ki of citalopram = 0.38 nM; Ki of paroxetine = 0.033 nM). The i.c.v. administration of 5,7-dihydroxytryptamine to rats pretreated with nomifensine (to protect dopaminergic and noradrenergic nerve terminals) selectively decreased the Bmax of site 2, strongly supporting the idea that site 2 is a binding site on the serotonin (5-HT) transporter. This serotonergic lesion also increased the affinity of [125I]RTI-55 for the DA transporter by 10-fold. The ligand selectivity of the caudate 5-HT transporter was different from the [I125]RTI-55 binding site on the 5-HT transporter present in membranes prepared from whole rat brain minus caudate. The [125I]RTI-55 binding to the DA transporter was further resolved into two components, termed sites 1a and 1b, by using human and monkey (Macaca mulatta) caudate membranes but not the membranes prepared from rat caudate or COS cells that transiently expressed the cloned cocaine-sensitive DA transporter complementary DNA. Similar experiments also resolved two components of the caudate 5-HT transporter. Viewed collectively, these data provide evidence that [125I]RTI-55 labels multiple binding sites associated with the DA and 5-HT transporters.  相似文献   

12.
The role of N-glycosylation in the expression, ligand recognition, activity, and intracellular localization of a rat vesicular monoamine transporter (rVMAT1) was investigated. The glycosylation inhibitor tunicamycin induced a dose-dependent decrease in the rVMAT1-mediated uptake of [3H]serotonin. Part of this effect was due to a general toxic effect of the drug. Therefore, to assess the contribution of each of the glycosylation sites to the transporter activity, the three putative N-glycosylation sites were mutated individually, in combination, and in toto ("triple" mutant). Mutation of each glycosylation site caused a minor and additive decrease in activity, up to the triple mutant, which retained at least 50% of the wild-type activity. No significant differences were found either in the time dependence of uptake or the apparent affinity for ligands of the triple mutant compared with the wild-type protein. It is interesting that in contrast to plasma-membrane neurotransmitter transporters, the unglycosylated form of rVMAT1 distributed in the cell as the wild-type protein. Pro43 is a highly conserved residue located at the beginning of the large loop in which all the potential glycosylation sites are found. A Pro43Leu mutant transporter was inactive. It is remarkable that despite the presence of glycosylation sites, the mutant transporter was not glycosylated. Moreover, the distribution pattern of the Pro43Leu mutant clearly differed from that of the wild type. In contrast, a Pro43Gly mutant displayed an activity practically identical to the wild-type protein. As this replacement generated a protein with wild-type characteristics, we suggest that the conformation conferred by the amino acid at this position is essential for activity.  相似文献   

13.
The purpose of this study was to determine the primary form of human placental norepinephrine transporter (hNET) mRNA expressed in the human placenta and to compare the level of expression in normal pregnancies and in pregnancies complicated by drug exposure or other forms of physiological derangement. We used the hNET cDNA to measure RNA extracted from placenta and examined placental RNA following complicated and uncomplicated pregnancies. To compare transporter expression and its relation to fetal condition at birth, umbilical arterial plasma catecholamine levels, umbilical arterial blood gases and placental transporter mRNA level were compared by linear regression analysis. Uncomplicated pregnancies had a higher level of placental norepinephrine transporter mRNA than complicated pregnancies. An inverse relationship between umbilical cord norepinephrine level and transporter expression was demonstrated. We conclude that placental transporter expression represents an important and newly described metabolic function of the placenta. Placental catecholamine clearance mediated via the placental NET may be important in the pathophysiology of disorders associated with placental dysfunction, impaired placental blood flow or intrauterine growth retardation. This may also explain the adverse effects of drugs, such as cocaine, which block catecholamine transport.  相似文献   

14.
High affinity sodium- and potassium-coupled L-glutamate transport into presynaptic nerve terminals and fine glial processes removes the neurotransmitter from the synaptic cleft, thereby terminating glutamergic transmission. This report describes that the purified L-glutamate transporter from pig brain is phosphorylated by protein kinase C, predominantly at serine residues. Upon exposure of C6 cells, a cell line of glial origin, to 12-O-tetradecanoylphorbol-13-acetate, about a 2-fold stimulation of L-glutamate transport is observed within 30 min. Concomitantly, the level of phosphorylation increases with similar kinetics. The phorbol ester also stimulates L-glutamate transport in HeLa cells infected with a recombinant vaccinia virus expressing T7 RNA polymerase and transfected with pT7-GLT-1. The latter is a recently cloned rat brain glutamate transporter of glial origin. Mutation of serine 113 to asparagine does not affect the levels of expressed transport but abolishes its stimulation by the phorbol ester. To our knowledge, this is the first direct demonstration of the regulation of a neurotransmitter transporter by phosphorylation.  相似文献   

15.
Using two separate methods, we have determined that all six potential sites for N-linked glycosylation on the rat lutropin/choriogonadotropin receptor (rLHR) contain carbohydrates. The functional roles of the carbohydrates were analyzed initially through the use of two nonglycosylated receptor mutants rLHR(N(77,152,173,269,277,291)Q) and rLHR(N(77,152,269,277,291)Q;T(175)A). Although Western blot analyses demonstrated both mutant receptors to be stably expressed, little or no hCG binding activity could be detected in detergent solubilized extracts of 293 cells expressing either nonglycosylated LHR mutant. Although this loss of hCG binding was concluded to be due to misfolding, it was unknown whether this misfolding was due to the absence of carbohydrates or to the multiple amino acid substitutions that had been introduced into the polypeptide. To differentiate between these possibilities, hCG binding assays were performed with nonglycosylated receptors obtained after tunicamycin treatment of cells expressing the wild-type rLHR. Even though these wild-type receptors were confirmed to be devoid of all N-linked carbohydrates by Western blots, they were found to bind hCG with a normal high affinity. In addition, tunicamycin-derived, nonglycosylated LHRs were present at the cell surface and exhibited a phenotype consistent with mature receptors due to their capability to mediate hCG-stimulated cAMP production as well as bind oLH with high affinity. These results indicate that the loss of high affinity hormone binding by rLHR(N(77,152,173,269,277,291)Q) and rLHR(N(77,152,269,277,291)Q;T(175)A) is simply due to the collective amino acid substitutions rather than to the absence of carbohydrates. Therefore, N-linked carbohydrates are not absolutely required for the proper folding of the rLHR into a mature receptor capable of binding hormone and signaling. These results are in marked contrast to the follitropin receptor (FSHR), a very similar receptor which has been shown to strictly require N-linked carbohydrates for folding of the nascent protein.  相似文献   

16.
17.
Engineered mutants of human complement component C3 were used to test the idea that sites of length polymorphisms in protein families (indels) can guide a search for protein:protein interaction sites. Sequence changes were introduced at each of the 27 indels in the C3/4/5 protein family, and mutants at 26 indels were expressed by transiently transfected COS cells. Expressed proteins were assayed 1) for concentration, by ELISA and by autoradiography of radiolabeled protein; 2) for classical pathway hemolytic activity; 3) for susceptibility to proteolytic activation by the alternative pathway and cobra venom factor C3 convertases; and 4) for susceptibility to complement factor I in the presence of factor H. Most of the mutations did not appreciably alter expression or activity relative to wild-type C3, consistent with the idea that most indels occur at the protein surface. Mutations at four indels severely damaged C3 functional activity, but did not affect the stability or structure of the protein, as assessed by their effects on expression by COS cells and on susceptibility to cleavage by C3 convertases and factor I. These indels are therefore near functionally important amino acid residues; they represent good candidates for sites of protein:protein interactions. Mutation of the sequence at a fifth indel altered the equilibrium between the latent and reacted C3 conformations, and mutations at 4 other indels substantially decreased both protein activity and expression. The mutants provided an overview of the structural and functional roles played by different parts of C3.  相似文献   

18.
Chinese hamster ovary (CHO) mutants belonging to the Lec2 complementation group are unable to translocate CMP-sialic acid to the lumen of the Golgi apparatus. Complementation cloning in these cells has recently been used to isolate cDNAs encoding the CMP-sialic acid transporter from mouse and hamster. The present study was carried out to determine the molecular defects leading to the inactivation of CMP-sialic acid transport. To this end, CMP-sialic acid transporter cDNAs derived from five independent clones of the Lec2 complementation group, were analyzed. Deletions in the coding region were observed for three clones, and single mutants were found to contain an insertion and a point mutation. Epitope-tagged variants of the wild-type transporter protein and of the mutants were used to investigate the effect of the structural changes on the expression and subcellular targeting of the transporter proteins. Mutants derived from deletions showed reduced protein expression and in immunofluorescence showed a diffuse staining throughout the cytoplasm in transiently transfected cells, while the translation product derived from the point-mutated cDNA (G189E) was expressed at the level of the wild-type transporter and co-localized with the Golgi marker alpha-mannosidase II. This mutation therefore seems to directly affect the transport activity. Site-directed mutagenesis was used to change glycine 189 into alanine, glutamine, and isoleucine, respectively. While the G189A mutant was able to complement CMP-sialic acid transport-deficient Chinese hamster ovary mutants, the exchange of glycine 189 into glutamine or isoleucine dramatically affected the transport activity of the CMP-sialic acid transporter.  相似文献   

19.
A approximately 110-kDa glycoprotein purified from canalicular vesicles by bile acid affinity chromatography has been identified as the canalicular bile acid transport protein. Internal amino acid sequence and chemical and immunochemical characteristics of this protein were found to be identical to a rat liver canalicular ecto-ATPase. In order to definitively determine whether these were two activities of a single polypeptide, we examined the possibility that transfection of cDNA for the ecto-ATPase would confer bile acid transport characteristics, as well as ecto-ATPase activity, on heterologous cells. The results show that transfection of the ecto-ATPase cDNA conferred on COS cells de novo synthesis of a approximately 110-kDa polypeptide, as immunoprecipitated by antibody to the purified canalicular bile acid transport protein and conferred on COS cells the capacity to pump out [3H]taurocholate with efflux characteristics comparable with those previously determined in canalicular membrane vesicles (Km = 100 microM; Vmax = 200 pmol/mg of protein/20 s). A truncated ecto-ATPase cDNA, missing the cytoplasmic tail, was targeted correctly to the cell surface but did not confer bile acid transport activity on COS cells. The results of this study also show that the canalicular ecto-ATPase/bile acid transport protein is phosphorylated on its cytoplasmic tail and that its phosphorylation is stimulated by activation of protein kinase C and inhibited by inhibitors of protein kinase C activation. Moreover, inhibition of protein kinase C activation by staurosporine completely abrogates bile acid transport but does not affect ATPase activity. This study, therefore, demonstrates that the rat liver canalicular ecto-ATPase is also a bile acid transport protein, that the capacity to pump out bile acid can be conferred on a heterologous cell by DNA-mediated gene transfer, and that phosphorylation within the cytoplasmic tail of the transporter is essential for bile acid efflux activity but not for ATPase activity.  相似文献   

20.
P-glycoprotein, the multidrug resistance transporter, is phosphorylated in vivo and the major phosphorylation domain has been identified as the linker region (amino acids 629-686). The linker region is a highly charged segment of the transporter in which the negative and positive amino acid side chains are spatially segregated. Both of these charged domains contain several consensus phosphorylation sites for protein kinases. Three of the consensus phosphorylation sites for basic-directed kinases in murine mdr1b P-glycoprotein are utilized in vivo and have been identified as serines 665, 669, and 681. Mutagenesis of all the consensus basic-directed kinase phosphorylation sites in the linker region of human MDR1 P-glycoprotein did not alter the ability of the mutated transporter to confer the multidrug resistance phenotype in stably transfected cell lines. These studies would suggest that phosphorylation/dephosphorylation within the basic domain of the linker region is not directly involved in regulation of drug transporter activity. We now report that the linker region of mdr1b P-glycoprotein is also phosphorylated in vivo within the acidic domain (amino acids 631-658). These sites have been mapped using casein kinase II, a prototypic acidic-directed kinase, and a recombinant mdr1b linker region peptide (amino acids 621-687). Electrospray mass spectrometry demonstrated that casein kinase II could introduce up to five phosphates into the recombinant peptide. Two-dimensional phosphopeptide mapping indicated that all the phosphates were contained in a tryptic peptide consisting of amino acids 631-658. Phosphopeptide mapping of in vivo labeled P-glycoprotein, isolated from either J7.V1-1, a murine vinblastine-resistant cell line, or HeLa cells stably transfected with mdr1b P-glycoprotein cDNA, revealed that this tryptic peptide was phosphorylated in both proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号