首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
磷酸法水稻秆活性炭的制备   总被引:3,自引:1,他引:2  
以水稻秆为原料,采用磷酸活化法制备活性炭。研究了浸渍比、活化温度对活性炭样品吸附性能的影响,并对其微结构进行N2吸附等温线、热重-微商热重法(TG-DTG)、扫描电子显微镜(SEM)等表征。结果表明:水稻秆适合作为磷酸法活性炭的原料,吸附性能达到市售脱色活性炭的指标要求。在浸渍比为3∶1、活化温度 450 ℃、活化时间 60 min 的条件下,制得活性炭的亚甲基蓝吸附值 215 mg/g,碘吸附值 855 mg/g,A法焦糖脱色率 110 %,BET比表面积 967.72 m2/g,总孔容积 1.23 cm3/g,中孔率 84.6 %,平均孔径 4.6 nm。  相似文献   

2.
微波加热化学活化法制备活性炭的优化工艺研究   总被引:2,自引:2,他引:0  
研究了微波加热条件下碳酸钾活化制备活性炭的工艺流程。以碳酸钾为活化剂,微波为热源,采用正交试验,研究了浸渍时间、活化剂浓度、微波功率、微波加热时间对活性炭产品性能碘吸附值、亚甲基蓝吸附值、得率的影响规律,得到了最佳工艺条件,即微波功率600 W、微波加热时间6 min、碳酸钾浓度0.20 g/mL、浸渍时间24 h。制得活性炭的碘吸附值可达1189.68 mg/g、亚甲基蓝吸附值190 mL/g、得率29.48%,在该工艺条件下,制备的活性炭试样比表面积为1186.10 m2/g,总孔容积0.624 cm3/g,微孔容积0.407 cm3/g,吸附性能较国家标准有所提高。  相似文献   

3.
高比表面积煤质活性炭的制备与活化机理   总被引:5,自引:0,他引:5       下载免费PDF全文
王秀芳  田勇  张会平 《化工学报》2009,60(3):733-737
以煤为原料,采用KOH活化法制备了高比表面积活性炭,分别考察了活化温度、浸渍比和活化时间等工艺参数对活性炭吸附性能的影响;测试了高比表面积活性炭在-196℃对N2的吸附等温线、比表面积和孔径分布。结果表明,当活化工艺参数为活化温度900℃,浸渍比4,活化时间1.5 h的条件下可以制得较好的高比表面积活性炭产品,其比表面积为3135 m2·g-1,孔容为1.72 cm3·g-1,碘吸附值为2657 mg·g-1;采用扫描电子显微镜观察了高比表面积活性炭的微观结构,采用气体分析仪检测了活化过程中的尾气成分,提出了高比表面积活性炭的活化机理。  相似文献   

4.
CO_2活化制备椰壳基活性炭   总被引:6,自引:1,他引:6  
以600℃下炭化2h后的椰壳炭化料为原料,通过CO2活化制备椰壳基活性炭,研究了活化温度、活化时间、CO2流量对活性炭得率及其吸附性能的影响。同时测定了该活性炭的N2吸附等温线,通过非定域化密度函数理论表征活性炭孔径分布。在适宜的工艺条件,所制备活性炭的得率为24%,碘吸附值为1428mg/g,其比表面积、总孔容积、微孔容积分别可达:1653m2/g,1.045cm3/g,0.8582cm3/g,且以2nm以下的微孔为主,产品性能达到了双层电容器专用活性炭(LY/T1617—2004)标准。  相似文献   

5.
采用水蒸气活化法制备得到椰壳活性炭,以850℃活化得到微孔率最高的活性炭为吸附剂,考察其对肌酐的体外吸附性能,探讨了吸附时间、肌酐初始质量浓度、吸附温度及pH值对肌酐吸附量的影响。结果表明,微孔率高的(71.0%)椰壳活性炭对肌酐吸附性能良好;30min内吸附量迅速升至57.8mg/g,7h时达到平衡,平衡吸附量为76.4mg/g;在30~70℃温度范围内,肌酐吸附量随温度升高而增加;酸性环境有利于肌酐的吸附,pH值为2时吸附量达到最大,为123.55mg/g。  相似文献   

6.
物理-化学耦合活化法制煤基活性炭   总被引:1,自引:0,他引:1  
以神府3#煤为原料,氢氧化钾为化学活化剂,水蒸气为物理活化剂,探讨了物理-化学耦合活化法制备煤基活性炭的工艺条件和耦合活化机理,考察了氢氧化钾与煤的浸渍比、活化温度及总活化时间对活性炭性能的影响.结果表明,当活化温度为700 ℃,碱渍比为0.5,活化时间为60 min时,活性炭的性能较好,碘吸附值为837 mg/g,亚甲基蓝吸附值为409 mg/g, BET比表面积943 m2/g,总孔容积达0.31 cm3/g,煤副产氢气约58 mmol/g.  相似文献   

7.
以碘吸附值、亚甲基蓝吸附值及活性炭得率为考察指标,选取对糠醛渣活性炭性质影响较大的浸渍比、磷酸质量分数、活化温度、保温时间4个因素进行L16(45)正交试验对磷酸活化法制备糠醛渣活性炭的工艺条件进行优化。由正交试验结果得到磷酸活化的最佳工艺条件为:磷酸质量分数60%,浸渍比2.5:1,活化温度550 ℃,保温1.5 h,此条件下制得的活性炭样品的碘吸附值为839.6 mg/g,亚甲基蓝吸附值为260.3 mg/g,得率为46.8%,比表面积为830.20 m2/g,孔容积为0.502 cm3/g,孔径集中在0.8~2.5 nm,具有丰富的中孔和微孔。  相似文献   

8.
以沙漠治理树种长柄扁桃的种壳为原料,采用水蒸气活化法制得了介孔发达的活性炭,并研究了炭化温度、活化温度、活化时间、水蒸气用量对活性炭吸附性能及产率的影响。结果表明:在炭化温度600℃、活化温度850℃、活化时间60 min、水蒸气与炭化料的质量比为6:1的最佳工艺条件下,制得活性炭样品的产率为12%,碘吸附值和亚甲基蓝吸附值分别达到1 175和315 mg/g,介孔率为60.9%,比表面积为1 127 m2/g,平均孔径2.6 nm,在吸附平衡时间为24 h时,活性炭对水溶液中头孢氨苄的吸附量高达245 mg/g,优于相同条件下制得的椰壳和核桃壳活性炭的吸附能力。  相似文献   

9.
以棉纺品废料为原材料,采用氯化铁为活化剂热解制备活性炭,基于响应曲面法考察质量比(氯化铁:棉纺品废料)、活化时间及活化温度及对活性炭得率及碘吸附值的影响。在质量比为1.7:1、活化时间为67 mim、活化温度为700℃的最优化制备工艺条件下,活性炭的得率和碘吸附值分别为36.02%和735.71 mg/g。SEM和BET的结果表明,活性炭表面孔道丰富,比表面积、总孔体积及平均孔径分别为800.23 m~2/g、0.46 cm~3以及2.32 nm。对Cr(VI)的吸附过程符合Langmuir吸附等温模型,为单层吸附,最大吸附量为204.08 mg/g,吸附性能优异。  相似文献   

10.
以农业废弃物棉秆为原料,采用氢氧化钾活化法制备活性炭,并用于吸附含苯酚废水中的苯酚。棉秆基活性炭的最佳制备条件为棉秆先炭化,以KOH溶液为活化剂,KOH与棉秆炭的质量比(物料比)1.5:1,活化温度800 ℃、活化时间70 min,此条件下制备的棉秆活性炭亚甲基蓝的吸附值为342.33 mg/g,碘吸附值为1 368.65 mg/g,其BET比表面积达到了1 735.94 m2/g,总孔容积0.36 cm3/g,平均孔径2.33 nm。将此活性炭用于吸附苯酚,苯酚质量浓度60 mg/L的50 mL废水中,当pH值为7,吸附时间2 h,活性炭投放量为50 mg时,苯酚去除率最高可达98%。对此吸附过程进行动力学分析,结果表明准二级动力学模型能很好的描述此活性炭吸附苯酚的过程。  相似文献   

11.
魏海博  陈一民  白书欣 《广州化工》2012,40(14):101-104
以椰壳炭化料为原料,采用KOH活化法制备活性炭,研究了KOH/炭化料的质量比、升温速率、活化温度和活化时间对活性性能的影响。实验结果表明,KOH/炭化料的质量比是该方法制备活性炭的最主要影响因素,较优的工艺参数为:KOH/炭化料的质量比为4∶1、升温速率为5℃/min、活化温度为800℃、活化时间为1 h。同时制备得到了比表面积达到2413 m2/g、微孔容积达到1.02 cm3/g,且以0.9 nm以下微孔为主的椰壳活性炭。  相似文献   

12.
以油茶壳为原料,经炭化、KOH活化,制备微孔活性炭。考查了活化温度、活化时间和碱炭比对微孔活性炭碘吸附值和产率的影响,并采用正交试验优化了制备条件。研究结果表明:活化温度800℃、活化时间180 min、碱炭质量比3.5:1时,活性炭的碘吸附值达3 221 mg/g,产率51.2%。采用比表面积孔隙分析仪测定了氮气吸附/脱附等温线,计算得BET比表面积为1 755.72 m2/g,平均孔径为2.15 nm,总孔容为0.328 cm3/g,微孔孔容占总孔容的55.8%;SEM分析可见活性炭表面具有大量孔隙结构;FT-IR分析表明活化促进了—CH3、—OH热解,活性炭中仍保存含氧官能团。  相似文献   

13.
以废弃的辣椒秸秆为原料,KOH为活化剂,制备高比表面积活性炭,研究了碱炭比、活化温度、炭化温度及活化时间对活性炭吸附性能的影响。结果表明,活性炭制备的最佳工艺条件为:碱炭比为3∶1,活化温度为700℃,炭化温度为450℃,活化时间为40 min。在此条件下,制得的活性炭碘吸附值2 356.40 mg/g,亚甲基蓝吸附值41.3 mL/0.1 g,BET比表面积为2 432.135 m2/g,Langmuir比表面积高达3 270.478 m2/g,吸附总孔容为2.064 cm3/g,平均孔径为3.246 nm。SEM和XRD观察发现,辣椒秆活性炭呈不定形态,具有丰富和发达的蜂窝状孔隙结构。  相似文献   

14.
水蒸气活化法制备椰壳活性炭的孔结构特征   总被引:2,自引:0,他引:2  
以农林废弃物椰壳在600℃炭化2h后的炭化料为原料,以水蒸气为活化剂,研究了活化温度、活化时间、水蒸气用量对活性炭的比表面积、微孔容积和收率等的影响。结果表明:椰壳炭化料的比表面积仅为185m^2/g,且以中孔为主。在活化过程中,通过提高活化温度和水蒸气用量缩短了活化时间,扩宽了孔径;当水蒸气用量和活化温度较为适宜时,延长活化时间,有利于微孔的形成。活性炭的比表面积、总孔容积、微孔容积可达:1465m^2/g,0.9703cm^3/g,0.7519cm^2/g。并通过非定域密度函数理论(NLDFT)对活性炭的孔径分布进行了表征。  相似文献   

15.
以生物质炭为原料,采用氯化锌活化制备高比表面积微孔生物质活性炭,研究了浸渍比、活化剂浓度、活化温度与活化时间等条件对生物质活性炭吸附性能的影响,利用氮气吸附脱附、扫描电子显微镜、傅里叶红外光谱、X射线衍射等技术对生物质活性炭表面微观结构、形貌特征及化学结构进行了分析。结果表明,制备生物质活性炭的适宜工艺条件为:浸渍比为3,活化剂质量分数为40%,活化温度为600℃,活化时间为90min。在该条件下制备的生物质活性炭对亚甲基蓝的吸附值为213mg/g,超过国家水处理用活性炭一级品标准。经测试生物质活性炭的BET比表面积高达631.2m2/g,平均孔径2.23nm,总孔容为0.352cm3/g;孔隙结构发达,孔径分布狭窄,孔形状为排列整齐的蜂窝状结构,含有大量的微孔,84.4%的孔集中在2nm以内;表面存在醇羟基、羰基、醚、酚等含氧官能团。  相似文献   

16.
油茶果壳活性炭的制备及其对苯酚的吸附   总被引:2,自引:0,他引:2  
余少英 《应用化工》2010,39(6):823-826
以油茶果壳为原料,60%的磷酸溶液为活化剂制备了油茶果壳活性炭,探讨了料液比、活化温度与时间对油茶果壳活性炭吸附苯酚性能的影响。结果表明,在活化温度为600℃,活化时间为90 min,料液比(g∶g)为1∶3时,制备的油茶果壳活性炭对苯酚的吸附效果最好。油茶果壳活性炭对苯酚吸附的最佳条件为:在30℃,0.1 g油茶果壳活性炭对100 mL的500 mg/L苯酚吸附5 h后,吸附量达到了218.0 mg/g。  相似文献   

17.
以椰壳炭化料为原料,KOH为活化剂,在不同工艺条件下制备了超级电容器用活性炭电极材料。考察了碱炭比、活化温度和活化时间对活性炭孔隙结构及其用作电极材料的比电容的影响。结果表明,在KOH与椰壳炭化料质量比为4:1,活化温度800℃,活化时间60 min的条件下,可制得比表面积2891 m2/g,总孔容积1.488 cm3/g,中孔率73.6%,比电容达235 F/g的优质活性炭电极材料。  相似文献   

18.
易牡丹  丘克强 《应用化工》2012,41(7):1127-1131
采用CO2活化法以阻燃的FR-1型酚醛树脂基板为原料制备出性能优良的活性炭。研究了活化温度、活化时间和气体流量对产品性能的影响。所得产品BET比表面积达到1 198 m2/g,总孔体积达到0.703 cm3/g。在最佳条件,即活化温度910℃,活化时间140 min和CO2流量350 cm3/min时,亚甲基蓝值和碘值分别达到292.0 mg/g和1 113.05 mg/g,均达到国家一级品标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号