首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The information transfer rate, given in bits per trial, is used as an evaluation measurement in a brain-computer interface (BCI). Three subjects performed four motor-imagery (left hand, right hand, foot, and tongue) and one mental-calculation task. Classification of the EEG patterns is based on band power estimates and hidden Markov models. We propose a method that combines the EEG patterns based on separability into subsets of two, three, four, and five mental tasks. The information transfer rates of the BCI systems comprised of these subsets are reported. The achieved information transfer rates vary from 0.42 to 0.81 bits per trial and reveal that the upper limit of different mental tasks for a BCI system is three. In each subject, different combinations of three tasks resulted in the best performance  相似文献   

2.
The Wadsworth BCI Research and Development Program: at home with BCI.   总被引:1,自引:0,他引:1  
The ultimate goal of brain-computer interface (BCI) technology is to provide communication and control capacities to people with severe motor disabilities. BCI research at the Wadsworth Center focuses primarily on noninvasive, electroencephalography (EEG)-based BCI methods. We have shown that people, including those with severe motor disabilities, can learn to use sensorimotor rhythms (SMRs) to move a cursor rapidly and accurately in one or two dimensions. We have also improved P300-based BCI operation. We are now translating this laboratory-proven BCI technology into a system that can be used by severely disabled people in their homes with minimal ongoing technical oversight. To accomplish this, we have: improved our general-purpose BCI software (BCI2000); improved online adaptation and feature translation for SMR-based BCI operation; improved the accuracy and bandwidth of P300-based BCI operation; reduced the complexity of system hardware and software and begun to evaluate home system use in appropriate users. These developments have resulted in prototype systems for every day use in people's homes.  相似文献   

3.
脑-机接口技术旨在大脑与外部环境之间建立一种全新的不依赖于外周神经和肌肉的交流与控制通道。基于稳态视觉诱发电位的脑-机接口是目前信息传输率最高的无创脑 机接口范式,但是仍低于传统的交互方式。提出一种结合表面肌电与稳态视觉诱发电位的混合脑 机接口,以进一步提高系统的信息传输率。通过不同频率的高频稳态视觉诱发电位结合sEMG编码,实现二者混合脑 机接口系统。利用典型相关分析方法对SSVEP信号进行频率识别,sEMG的检测则采用频域分析方法。来自8名健康受试者的离线结果表明该系统能够获得8428% 的平均准确率,平均信息传输率为7263 bits/min。这些结果为结合表面肌电与稳态视觉诱发电位的混合脑 机接口研究奠定了基础。  相似文献   

4.
Most current brain-computer interface (BCI) systems for humans use electroencephalographic activity recorded from the scalp, and may be limited in many ways. Electrocorticography (ECoG) is believed to be a minimally-invasive alternative to electroencephalogram (EEG) for BCI systems, yielding superior signal characteristics that could allow rapid user training and faster communication rates. In addition, our preliminary results suggest that brain regions other than the sensorimotor cortex, such as auditory cortex, may be trained to control a BCI system using similar methods as those used to train motor regions of the brain. This could prove to be vital for users who have neurological disease, head trauma, or other conditions precluding the use of sensorimotor cortex for BCI control.  相似文献   

5.
Steady‐state visual evoked potential (SSVEP)‐based brain–computer interface (BCI) systems are among the most accurate assistive devices for patients with severe disabilities. However, existing visual stimulation patterns lead to eye fatigue, which affects the system performance. Therefore, in this study, we propose two improvements to SSVEP‐based BCI systems. First, we propose a novel visual stimulator that incorporates a visual motion stimulus for the steady‐state visual stimulus to reduce eye fatigue while maintaining the advantages associated with SSVEPs. We also propose two corresponding feature extraction algorithms, i.e. SSVEP detection and visual attention detection, to capture the phenomena of steady‐state motion visual stimulus responses. The accuracy of the test was ∼83.6%. Second, we propose a novel hybrid BCI‐SSVEP system and a motion visual stimulus hybrid BCI system to enhance the SSVEP‐based BCI system during a state of eye fatigue. Participants used the SSVEP system until reaching a fatigued state and then began using a hybrid motion visual stimulus. The accuracy of the proposed system was ∼85.6%. The proposed improvements can be incorporated into practical BCI systems for wheelchair control. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

6.
One of the critical issues in brain-computer interface (BCI) research is how to translate a person's intention into brain signals for controlling computer programs. The motor system is currently the primary focus, where signals are obtained during imagined motor responses. However, cognitive brain systems are also attractive candidates, in that they may be more amenable to conscious control, yielding better regulation of magnitude and duration of localized brain activity. We report on a proof of principle study for the potential use of a higher cognitive system for BCI, namely the working memory (WM) system. We show that mental calculation reliably activates the WM network as measured with functional magnetic resonance imaging (fMRI). Moreover, activity in the dorsolateral prefrontal cortex (DLPFC) indicates that this region is active for the duration of mental processing. This supports the notion that DLPFC can be activated, and remains active, at will. Further confirmation is obtained from a patient with an implanted electrode grid for diagnostic purposes, in that gamma power within DLPFC increases during mental calculation and remains elevated for the duration thereof. These results indicate that cortical regions involved in higher cognitive functions may serve as a readily self-controllable input for BCI applications. It also shows that fMRI is an effective tool for identifying function-specific foci in individual subjects for subsequent placement of cortical electrodes. The fact that electrocorticographic (ECoG) signal confirmed the functional localization of fMRI provides a strong argument for incorporating fMRI in BCI research.  相似文献   

7.
One of the main issues in designing a brain-computer interface (BCI) is to find brain patterns, which could easily be detected. One of these pattern is the steady-state evoked potential (SSEP). SSEPs induced through the visual sense have already been used for brain-computer communication. In this work, a BCI system is introduced based on steady-state somatosensory evoked potentials (SSSEPs). Transducers have been used for the stimulation of both index fingers using tactile stimulation in the "resonance"-like frequency range of the somatosensory system. Four subjects participated in the experiments and were trained to modulate induced SSSEPs. Two of them learned to modify the patterns in order to set up a BCI with an accuracy of between 70% and 80%. Results presented in this work give evidence that it is possible to set up a BCI which is based on SSSEPs.  相似文献   

8.
This paper proposes a steady‐state auditory stimulus modality and a detection algorithm to replace steady‐state visual evoked potential (SSVEP )‐based brain–computer interface (BCI ) systems during visual fatigue periods. The optimal speaker position for the steady‐state auditory evoked potential (SSAEP )‐based BCI system and possible electrode positions are investigated. Using the proposed system, an accuracy of 85% for two commands was achieved based on the T3–T5 and T4–T6 electrode positions using only one speaker. SSAEP is a promising BCI modality for mitigating the problem of eye fatigue that often occurs during the use of SSVEP ‐based BCI systems. However, SSAEP ‐based BCI systems suffer from low accuracy. To increase accuracy, we propose a new enhanced SSAEP training method. The training process was enhanced by instructing users to control their attention levels while simultaneously detecting an auditory stimulus frequency. Furthermore, we propose a corresponding single‐frequency, multi‐command BCI paradigm for the proposed training method. With the proposed paradigm, four commands can be detected using only one auditory stimulus frequency. The proposed training system yielded an accuracy of ∼81% compared to 66% for sessions performed without the proposed training method. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

9.
A brain-computer interface (BCI) is a system that allows its users to control external devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. Success requires the effective interaction of two adaptive controllers: the user's brain, which produces brain activity that encodes intent, and the BCI system, which translates that activity into device control commands. In order to facilitate this interaction, many laboratories are exploring a variety of signal analysis techniques to improve the adaptation of the BCI system to the user. In the literature, many machine learning and pattern classification algorithms have been reported to give impressive results when applied to BCI data in offline analyses. However, it is more difficult to evaluate their relative value for actual online use. BCI data competitions have been organized to provide objective formal evaluations of alternative methods. Prompted by the great interest in the first two BCI Competitions, we organized the third BCI Competition to address several of the most difficult and important analysis problems in BCI research. The paper describes the data sets that were provided to the competitors and gives an overview of the results.  相似文献   

10.
BCI Meeting 2005--workshop on signals and recording methods.   总被引:4,自引:0,他引:4  
This paper describes the highlights of presentations and discussions during the Third International BCI Meeting in a workshop that evaluated potential brain-computer interface (BCI) signals and currently available recording methods. It defined the main potential user populations and their needs, addressed the relative advantages and disadvantages of noninvasive and implanted (i.e., invasive) methodologies, considered ethical issues, and focused on the challenges involved in translating BCI systems from the laboratory to widespread clinical use. The workshop stressed the critical importance of developing useful applications that establish the practical value of BCI technology.  相似文献   

11.
By the use of a brain-computer interface (BCI), it is possible for completely paralyzed patients, who have lost their ability to speak, to have a new possibility to communicate with their environment. The training with such a BCI system can be performed at the patient's home, if there is a responsible person present who is familiar with the system. This person has to adjust different parameters and to adapt the training individually to each patient. Since this function is usually taken over by the developers of the system, the number of patients who can be included in regular BCI training is restricted due to geographical distances. This paper describes the implementation of a telemonitoring system, which makes it possible for the developer to control and supervise the BCI training from his or her own place of work. First experiences with a patient living far away from the developer's lab are reported.  相似文献   

12.
A new brain-computer interface design using fuzzy ARTMAP   总被引:5,自引:0,他引:5  
This paper proposes a new brain-computer interface (BCI) design using fuzzy ARTMAP (FA) neural network, as well as an application of the design. The objective of this BCI-FA design is to classify the best three of the five available mental tasks for each subject using power spectral density (PSD) values of electroencephalogram (EEG) signals. These PSD values are extracted using the Wiener-Khinchine and autoregressive methods. Ten experiments employing different triplets of mental tasks are studied for each subject. The findings show that the average BCI-FA out- puts for four subjects gave less than 6% of error using the best triplets of mental tasks identified from the classification performances of FA. This implies that the BCI-FA can be successfully used with a tri-state switching device. As an application, a proposed tri-state Morse code scheme could be utilized to translate the outputs of this BCI-FA design into English letters. In this scheme, the three BCI-FA outputs correspond to a dot and a dash, which are the two basic Morse code alphabets and a space to denote the end (or beginning) of a dot or a dash. The construction of English letters using this tri-state Morse code scheme is determined only by the sequence of mental tasks and is independent of the time duration of each mental task. This is especially useful for constructing letters that are represented as multiple dots or dashes. This combination of BCI-FA design and the tri-state Morse code scheme could be developed as a communication system for paralyzed patients.  相似文献   

13.
Although brain-computer interface (BCI) techniques have been developing quickly in recent decades, there still exist a number of unsolved problems, such as improvement of motor imagery (MI) signal classification. In this paper, we propose a hybrid algorithm to improve the classification success rate of MI-based electroencephalogram (EEG) signals in BCIs. The proposed scheme develops a novel cross-correlation based feature extractor, which is aided with a least square support vector machine (LS-SVM) for two-class MI signals recognition. To verify the effectiveness of the proposed classifier, we replace the LS-SVM classifier by a logistic regression classifier and a kernel logistic regression classifier, separately, with the same features extracted from the cross-correlation technique for the classification. The proposed approach is tested on datasets, IVa and IVb of BCI Competition III. The performances of those methods are evaluated with classification accuracy through a 10-fold cross-validation procedure. We also assess the performance of the proposed method by comparing it with eight recently reported algorithms. Experimental results on the two datasets show that the proposed LS-SVM classifier provides an improvement compared to the logistic regression and kernel logistic regression classifiers. The results also indicate that the proposed approach outperforms the most recently reported eight methods and achieves a 7.40% improvement over the best results of the other eight studies.  相似文献   

14.
Nearly all electroencephalogram (EEG)-based brain-computer interface (BCI) systems operate in a cue-paced or synchronous mode. This means that the onset of mental activity (thought) is externally-paced and the EEG has to be analyzed in predefined time windows. In the near future, BCI systems that allow the user to intend a specific mental pattern whenever she/he wishes to produce such patterns will also become important. An asynchronous BCI is characterized by continuous analyzing and classification of EEG data. Therefore, it is important to maximize the hits (true positive rate) during an intended mental task and to minimize the false positive detections in the resting or idling state. EEG data recorded during right/left motor imagery is used to simulate an asynchronous BCI. To optimize the classification results, a refractory period and a dwell time are introduced.  相似文献   

15.
Graz-BCI: state of the art and clinical applications   总被引:10,自引:0,他引:10  
The Graz-brain-computer interface (BCI) is a cue-based system using the imagery of motor action as the appropriate mental task. Relevant clinical applications of BCI-based systems for control of a virtual keyboard device and operations of a hand orthosis are reported. Additionally, it is demonstrated how information transfer rates of 17 b/min can be acquired by real time classification of oscillatory activity.  相似文献   

16.
We describe a study designed to assess a brain-computer interface (BCI), originally described by Farwell and Donchin [9] in 1988. The system utilizes the fact that the rare events in the oddball paradigm elicit the P300 component of the event-related potential (ERP). The BCI presents the user with a matrix of 6 by 6 cells, each containing one letter of the alphabet. The user focuses attention on the cell containing the letter to be communicated while the rows and the columns of the matrix are intensified. Each intensification is an event in the oddball sequence, the row and the column containing the attended cell are "rare" items and, therefore, only these events elicit a P300. The computer thus detects the transmitted character by determining which row and which column elicited the P300. We report an assessment, using a boot-strapping approach, which indicates that an off line version of the system can communicate at the rate of 7.8 characters a minute and achieve 80% accuracy. The system's performance in real time was also assessed. Our data indicate that a P300-based BCI is feasible and practical. However, these conclusions are based on tests using healthy individuals.  相似文献   

17.
The Berlin Brain-Computer Interface (BBCI) project develops a noninvasive BCI system whose key features are 1) the use of well-established motor competences as control paradigms, 2) high-dimensional features from 128-channel electroencephalogram (EEG), and 3) advanced machine learning techniques. As reported earlier, our experiments demonstrate that very high information transfer rates can be achieved using the readiness potential (RP) when predicting the laterality of upcoming left- versus right-hand movements in healthy subjects. A more recent study showed that the RP similarily accompanies phantom movements in arm amputees, but the signal strength decreases with longer loss of the limb. In a complementary approach, oscillatory features are used to discriminate imagined movements (left hand versus right hand versus foot). In a recent feedback study with six healthy subjects with no or very little experience with BCI control, three subjects achieved an information transfer rate above 35 bits per minute (bpm), and further two subjects above 24 and 15 bpm, while one subject could not achieve any BCI control. These results are encouraging for an EEG-based BCI system in untrained subjects that is independent of peripheral nervous system activity and does not rely on evoked potentials even when compared to results with very well-trained subjects operating other BCI systems.  相似文献   

18.
P300-based BCI mouse with genetically-optimized analogue control.   总被引:1,自引:0,他引:1  
In this paper we propose a brain-computer interface (BCI) mouse based on P300 waves in electroencephalogram (EEG) signals. The system is analogue in that at no point a binary decision is made as to whether or not a P300 was actually produced in response to the stimuli. Instead, the 2-D motion of the pointer on the screen, using a novel BCI paradigm, is controlled by directly combining the amplitudes of the output produced by a filter in the presence of different stimuli. This filter and the features to be combined within it are optimised by an evolutionary algorithm.  相似文献   

19.
Rapid prototyping of an EEG-based brain-computer interface (BCI)   总被引:7,自引:0,他引:7  
The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional DSP board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive model and linear discriminant analysis  相似文献   

20.
Recently, electroencephalogram (EEG)-based brain? computer interfaces (BCIs) have become a hot spot in the study of neural engineering, rehabilitation, and brain science. In this article, we review BCI systems based on visual evoked potentials (VEPs). Although the performance of this type of BCI has already been evaluated by many research groups through a variety of laboratory demonstrations, researchers are still facing many difficulties in changing the demonstrations to practically applicable systems. On the basis of the literature, we describe the challenges in developing practical BCI systems. Also, our recent work in the designs and implementations of the BCI systems based on steady-state VEPs (SSVEPs) is described in detail. The results show that by adequately considering the problems encountered in system design, signal processing, and parameter optimization, SSVEPs can provide the most useful information about brain activities using the least number of electrodes. At the same time, system cost could be greatly decreased and usability could be readily improved, thus benefiting the implementation of a practical BCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号