首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a surface topography simulation model is established to simulate the surface finish profile generated after a turning operation. The surface topography simulation model incorporates the effects of the relative motion between the cutting tool and the workpiece with the effects of tool geometry to simulate the resultant surface geometry. It is experimentally shown that the surface topography simulation model can properly simulate the surface profile generated by turning operations. The surface topography simulation model is used to study the effects of vibrations on the surface finish profile. It is found that the vibration frequency ratio is a more important vibration parameter than the vibration frequency on the characterization of the surface finish profile. The vibration frequency ratio is the ratio between the vibration frequency and the spindle rotational speed.  相似文献   

2.
The affected layer is generated within the machined surface layer through the cutting process. Cutting conditions such as the nose radius of the tool, feed rate and shape of cutting edge at the finishing operation affect the residual stress, surface hardness, and surface roughness. In this paper, it is shown that such machined surface property could be controlled by the setting of the cutting conditions to some extent. Then the effect of the machining conditions on the fatigue life was investigated through a fatigue test using the specimen finished under various cutting conditions. It was shown that it is possible to get longer fatigue life for machined parts than the virgin material or the carefully finished material without affected layer, only by setting the proper cutting conditions. Such a situation was realized when the generated residual stress was small and the induced surface hardness was high. A longer fatigue life for the machined components can be obtained by applying such cutting conditions as a low feed rate, a small corner radius and a chamfered cutting edge tool.  相似文献   

3.
This paper aims to increase the understanding of the adhesion between chip and tool rake face by studying the initial material transfer to the tool during orthogonal machining at 150 m/min. Two types of work material were tested, an austenitic stainless steel, 316L, and a carbon steel, UHB 11. The tools used were cemented carbide inserts coated with hard ceramic coatings. Two different CVD coatings, TiN and Al2O3, produced with two different surface roughnesses, polished and rough, were tested. The influences of both tool surface topography and chemistry on the adhesion phenomena in the secondary shear zone were thus evaluated. Extensive surface analyses of the inserts after cutting were made using techniques such as Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), and Transmission Electron Microscopy (TEM). As expected, cutting in the stainless steel resulted in a higher amount of adhered material, compared to cutting in the carbon steel. Remnants of built-up layers were found on the surfaces of the 316L chips but not on the UHB 11 chips. Moreover, it was shown that for both materials the tool roughness had a profound effect, with the rougher surfaces comprising much higher amounts of adhered material than the polished ones. Non-metallic inclusions from both types of workpiece steels accumulate in the high temperature area on the inserts. The general tendency was that higher amounts of transferred material were found on the TiN coating than on the Al2O3 coating after cutting.  相似文献   

4.
The present work concerns an experimental study of hard turning with CBN tool of AISI 52100 bearing steel, hardened at 64 HRC. The main objectives are firstly focused on delimiting the hard turning domain and investigating tool wear and forces behaviour evolution versus variations of workpiece hardness and cutting speed. Secondly, the relationship between cutting parameters (cutting speed, feed rate and depth of cut) and machining output variables (surface roughness, cutting forces) through the response surface methodology (RSM) are analysed and modeled. The combined effects of the cutting parameters on machining output variables are investigated while employing the analysis of variance (ANOVA). The quadratic model of RSM associated with response optimization technique and composite desirability was used to find optimum values of machining parameters with respect to objectives (surface roughness and cutting force values). Results show how much surface roughness is mainly influenced by feed rate and cutting speed. Also, it is underlined that the thrust force is the highest of cutting force components, and it is highly sensitive to workpiece hardness, negative rake angle and tool wear evolution. Finally, the depth of cut exhibits maximum influence on cutting forces as compared to the feed rate and cutting speed.  相似文献   

5.
During the milling operation, the cutting forces will induce vibration on the cutting tool, the workpiece, and the fixtures, which will affect the surface integrity of the final part and consequently the product's quality. In this paper, a generic and improved model is introduced to simultaneously predict the conventional cutting forces along with 3D surface topography during side milling operation. The model incorporates the effects of tool runout, tool deflection, system dynamics, flank face wear, and the tool tilting on the surface roughness. An improved technique to calculate the instantaneous chip thickness is also presented. The model predictions on cutting forces and surface roughness and topography agreed well with experimental results.  相似文献   

6.
In this work, a comprehensive model is established to predict the surface roughness achieved by single point diamond turning. In addition to the calculation of the roughness components in relation to the kinematics and minimum undeformed chip thickness, the newly developed model also takes the effects of plastic side flow and elastic recovery of materials as machined into account. Moreover, the ‘size effect’ has also been successfully integrated into the model, i.e. an inflection point appears in the trend line of predicted surface roughness as the ratio of maximal undeformed chip thickness to cutting edge radius (hDmax/rn) is equal to one unit. Face turning experiments validate that the maximal prediction error is only 13.35%. As the ratio of hDmax/rn is higher than one unit, both the prediction and experiments reveal that a conservation law exists in diamond turned surface roughness, owing to the competitive effects of kinematics, minimum undeformed chip thickness, plastic side flow and elastic recovery of materials on surface formation. Under the conservation law, the freedom control for an invariable surface roughness can be fulfilled in response to a quantitative ratio of hDmax/rn, either through an accurate configuration of feed rate and depth of cut with fixed tool nose radius and cutting edge radius, or by a reasonable selection of tool nose radius and controlled cutting edge radius with designed feed rate and depth of cut.  相似文献   

7.
在高频淬火态GCr15轴承钢切削过程中施加高能脉冲电流,研究了高能电脉冲对淬火态GCr15钢切削性能的影响。结果表明,在脉冲电流的作用下,主切削力、轴向表面粗糙度、表面硬度以及刀具磨损状况都显著降低。对高频淬火态GCr15轴承钢而言,脉冲电流的电致塑性效应与焦耳热效应能够促进位错运动,从而在较低温度与较短时间内达到回火效果,提高材料表面塑性变形能力,有效改善其切削加工性能。  相似文献   

8.
This paper presents an analytical approach for modeling of turn-milling which is a promising cutting process combining two conventional machining operations; turning and milling. This relatively new technology could be an alternative to turning for improved productivity in many applications but especially in cases involving hard-to-machine material or large work diameter. Intermittent nature of the process reduces forces on the workpiece, cutting temperatures and thus tool wear, and helps breaking of chips. The objective of this study is to develop a process model for turn-milling operations. In this article, for the first time, uncut chip geometry and tool–work engagement limits are defined for orthogonal, tangential and co-axial turn-milling operations. A novel analytical turn-milling force model is also developed and verified by experiments. Furthermore, matters related to machined part quality in turn-milling such as cusp height, circularity and circumferential surface roughness are defined and analytical expressions are derived. Proposed models show a good agreement with the experimental data where the error in force calculations is less than 10% for different cutting parameters and less than 3% in machined part quality analysis.  相似文献   

9.
The experimental study presented in this paper aims to select the most suitable cutting and offset parameter combination for the wire electrical discharge machining process in order to get the desired surface roughness value for the machined workpieces. A series of experiments have been performed on 1040 steel material of thicknesses 30, 60 and 80 mm, and on 2379 and 2738 steel materials of thicknesses 30 and 60 mm. The test specimens have been cut by using different cutting and offset parameter combinations of the “Sodick Mark XI A500 EDW” wire electrical discharge machine in the Middle East Technical University CAD/CAM/Robotics Center. The surface roughness of the testpieces has been measured by using a surface roughness measuring device. The related tables and charts have been prepared for 1040, 2379, 2738 steel materials. The tables and charts can be practically used for WEDM parameter selection for the desired workpiece surface roughness.  相似文献   

10.
PCBN is the dominant tool material for hard turning applications due to its high hardness, high wear resistance, and high thermal stability. However, the inflexibility of fabricating PCBN inserts with complex tool geometries and the prohibitive cost of PCBN inserts are some of the concerns in furthering the implementation of CBN based materials for hard turning. In this paper, we present the results of a thorough investigation of cBN plus TiN (cBN–TiN) composite-coated, commercial grade, carbide inserts (CNMA 432, WC–Co (6% Co)) for hard turning applications in an effort to address these concerns. The effect of cutting speed and feed rate on tool wear (tool life), surface roughness, and cutting forces of the cBN–TiN coated carbide inserts was experimented and analyzed using analysis of variance (ANOVA) technique, and the cutting conditions for their maximum tool life were evaluated. The tool wear, surface roughness, and cutting forces of the cBN–TiN coated and commercially available PCBN tipped inserts were compared under similar cutting conditions. Both flank wear and crater wear were observed. The flank wear is mainly due to abrasive actions of the martensite present in the hardened AISI 4340 alloy. The crater wear of the cBN–TiN coated inserts is less than that of the PCBN inserts because of the lubricity of TiN capping layer on the cBN–TiN coating. The coated CNMA 432 inserts produce a good surface finish (<1.6 μm) and yield a tool life of about 18 min per cutting edge. In addition, cost analysis based on total machining cost per part was performed for the comparison of the economic viability between the cBN–TiN coated and PCBN inserts.  相似文献   

11.
Identification of the dynamic cutting force coefficients is an essential work in cutting process modeling. The excitation equipment employed to produce dynamic cutting process is usually sophisticated and may lead to potential error. An alternative method of turning process excitation is proposed to simplify the procedure of cutting dynamics measurement. A cantilever workpiece used in cylindrical turning process has been modeled with a double degree-of-freedom system that supports variable dynamic parameters. The structural dynamics of the equivalent system are analyzed with the theoretical derivation and the finite element simulations. The influence of structural dynamic variation on the chatter frequency is investigated, based on which the self-excited chatter is considered as a method of the turning process excitation. This method is applied in the cutting dynamics tests. The dynamic cutting force coefficients could be measured through a single chattering turning process. Stability analysis is conducted for verification of the measured dynamic cutting coefficients.  相似文献   

12.
To avoid the use of cutting fluids in machining operations is one goal that has been searched for by many people in industrial companies, due to ecological and human health problems caused by the cutting fluid. However, cutting fluids still provide a longer tool life for many machining operations. This is the case of the turning operation of steel using coated carbide inserts. Therefore, the objective of this work is to find cutting conditions more suitable for dry cutting, i.e., conditions which make tool life in dry cutting, closer to that obtained with cutting with fluid, without damaging the workpiece surface roughness and without increasing cutting power consumed by the process. To reach these goals several finish turning experiments were carried out, varying cutting speed, feed and tool nose radius, with and without the use of cutting fluid. The main conclusion of this work was that to remove the fluid from a finish turning process, without harming tool life and cutting time and improving surface roughness and power consumed, it is necessary to increase feed and tool nose radius and decrease cutting speed.  相似文献   

13.
陈峻岐 《机床与液压》2021,49(5):115-119
为研究微织构对切削过程中产生的切削力和已加工表面粗糙度的影响,在聚晶立方氮化硼(PCBN)刀片前刀面制备与主切削刃平行的宽度为32.6μm的微沟槽织构.分别用微沟槽刀具和无织构刀具在主轴转速为450、500、600 r/min的条件下切削淬硬钢GCr15,分析切削力和已加工表面粗糙度.试验结果表明:微沟槽改善了刀具的切...  相似文献   

14.
KDP晶体具有各向异性,使得沿不同晶向切入时切削力的大小和作用效果发生改变,进而可能影响表面质量。利用高精度三向测力仪搭建了KDP切削力测试平台,对其沿不同晶向的切削力进行了测试。结果表明:切削力沿特定的角度呈一定的规律分布,与理论计算有一定的吻合,同时表面粗糙度值在不同的晶向也呈典型的周期分布。在切削力测试基础上,开展了表面粗糙度优化试验,在50 mm×50 mm工件上实现了S_q1.8 nm的超光滑表面加工。  相似文献   

15.
Significant progress has already been achieved in green manufacturing including dry and hard, often high-speed, machining technologies. For instance, the demand for higher productivity has resulted in the wider application of ceramic and PCBN tools with special multi-radii (wiper) geometry. This paper reports some important characteristics of the surface roughness produced in the turning of a hardened low-chromium alloy steel using mixed alumina–titanium carbon (TiC) ceramic cutting tools equipped with both conventional and wiper inserts. The characteristic geometrical features of surfaces obtained in both these turning operations have been assessed by means of representative two-dimensional (2D) surface roughness parameters, and some 3D visualizations, which allowed more complete characterization of the surface topography and prediction of its service properties. Results show that keeping equivalent feed rates, i.e. 0.1 mm/rev for conventional and 0.2 mm/rev for wiper tools, the surfaces obtained have similar 3D height roughness parameters, and comparable values of skew and kurtosis. At defined cutting parameters, surfaces produced by wiper tools contain blunt peaks with distinctly smaller slopes resulting in better bearing properties. Only marginal changes of Ra parameter were recorded during 15 min machining trials.  相似文献   

16.
High-pressure coolant (HPC) delivery is an emerging technology that delivers a high-pressure fluid to the tool and machined material. The high fluid pressure allows a better penetration of the fluid into the tool–workpiece and tool–chip contact regions, thus providing a better cooling effect and decreasing tool wear through lubrication of the contact areas.The main objective of this work is to understand how the tool wear mechanisms are influenced by fluid pressure, flow rate and direction of application in finish turning of AISI 1045 steel using coated carbide tools.The main finding was that when cutting fluid was applied to the tool rake face, the adhesion between chip and tool was very strong, causing the removal of tool particles and large crater wear when the adhered chip material was removed from the tool by the chip flow. When cutting fluid was not applied to the rake face, adhesion of chip material to the face did occur, but was not strong enough to remove tool particles as it moved across the face, and therefore crater wear did not increase.  相似文献   

17.
In order to improve the wear resistance of martensitic stainless steel, a surface treatment system was developed that combines high-frequency induction heating (IH) with fine particle peening (FPP). In this system, a compressed air spray from the FPP nozzle rapidly cools the specimen surface, which is heated by the IH system. The specimen surface can be simultaneously modified by work hardening and quenching. Vickers hardness and retained austenite measurements were conducted to characterize the surface-modified layer generated by the developed process. Surface microstructures were also observed by scanning electron microscopy (SEM) and optical microscopy. The process created a surface with a high hardness and an extremely fine-grained microstructure. The fine-grained microstructure was generated by dynamic recrystallization. The process reduced the amount of retained austenite in the surface layer because it increased the precipitated chromium carbide content. Reciprocating sliding wear tests were conducted to evaluate the wear resistance of the surface. The specimen modified by the developed process exhibited higher wear resistance than specimens that had only been quenched. This implies that the developed simultaneous process can significantly improve the wear resistance of steel surfaces.  相似文献   

18.
D. Umbrello 《CIRP Annals》2009,58(1):73-76
In machining of hard parts, surface integrity is one of the most specified customer requirements. Often, the major indications of surface integrity are surface roughness and residual stresses. However, the material microstructure also changes in machined-hardened steels, and it must be taken into account for improving product performance. In this paper, a hardness-based flow stress and an empirical model for describing the white and dark layers formation were developed and implemented in a FE code. The proposed model was validated by comparing the predicted results with the experimental evidences.  相似文献   

19.
淬火钢硬度较高,使用常规刀具加工时难以达到理想效果。现根据工件不同的硬度要求,提出了采用不同牌号的刀具材料,选择合理的切削用量,可获得较好的加工质量和经济效益。  相似文献   

20.
在Gleeble-3500热模拟机及热膨胀试验仪上测定了45MnSiVSQ钢动态及静态膨胀曲线,并采用切线法结合组织及硬度,测定了试验钢的静态和动态连续冷却转变(CCT)曲线,研究分析了形变温度和冷却速度对非调质钢45MnSiVSQ相变及珠光体片层间距的影响。结果表明:在0.1~3 ℃/s冷却速度范围内,珠光体片层间距随着冷却速度的增大而减小;对比950 ℃的动、静态CCT曲线可知,形变使试验钢相变起始温度有所升高,即相变孕育期缩短,其中对铁素体和珠光体相变区间影响尤为明显,而对贝氏体和马氏体相变区间孕育期的影响较小,表现为动态CCT曲线相比静态CCT曲线向左上方移动;对比不同形变温度下的动态CCT曲线可知,形变温度950 ℃时,贝氏体相变冷速区间为0.5~20 ℃/s,850 ℃形变时的贝氏体相变冷速区间为0.8~10 ℃/s。低温形变更利于铁素体和珠光体相变发生,减少了贝氏体、马氏体等非理想组织出现的机率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号