首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: In diabetic retinopathy and macular edema, the blood-retinal barrier fails to function properly, and there is transvascular leakage of proteins and solutes. The tight junction protein occludin and the adherens junction protein cadherin-5 have been shown to be critical to maintaining the endothelial barrier and regulating paracellular transport of large vessel endothelia. However, the expression and distribution of these junction proteins in the retinal endothelium is not well characterized. METHODS: Human and bovine retinal endothelial cells were isolated as described previously. Western blot analysis and flow cytometry techniques were used to assay for the presence of occludin, zonula occludens-1 (ZO-1), cadherin-5, and beta-catenin. The subcellular localization of the proteins was visualized by immunohistochemistry performed on cultured human retinal endothelial cells and cryosections of bovine retina. RESULTS: Western blot analysis and flow cytometry techniques found occludin, ZO-1, cadherin-5, and beta-catenin in cultured human retinal endothelial cells. Immunofluorescence staining of cultured retinal endothelial cells and cryosections of bovine retina showed junctional localization of occludin, ZO-1, cadherin-5, and beta-catenin. CONCLUSIONS: This report demonstrates the expression of occludin and cadherin-5 in retinal endothelial cells and their localization to sites of cell-cell contact. Expression of their respective regulatory proteins, ZO-1 and beta-catenin, at sites of cell-cell contact suggests that occludin and cadherin-5 play a role in maintaining the retinal endothelial barrier.  相似文献   

2.
3.
The c-Myc protein (Myc) is involved in cellular transformation and mitogenesis, but is also a potent inducer of programmed cell death, or apoptosis. Whether these apparently opposite functions are mediated through common or distinct molecular mechanisms remains unclear. Myc and its partner protein, Max, dimerize and bind DNA in vitro and in vivo through basic/helix-loop-helix/leucine zipper motifs (bHLH-LZ). By using complementary leucine zipper mutants (termed MycEG and MaxEG), which dimerize efficiently with each other but not with their wild-type partners, we demonstrate that both cell cycle progression and apoptosis in nontransformed rodent fibroblasts are induced by Myc-Max dimers. MycEG or MaxEG alone are inactive, but co-expression restores ability to prevent withdrawal from the cell cycle and to induce cell death upon removal of growth factors. Thus, Myc can control two alternative cell fates through dimerization with a single partner, Max.  相似文献   

4.
5.
Double-label immunocytochemistry was carried out on cryostat sections of rat retina to test for the presence of calretinin in cholinergic starburst and the rod pathway-related glycinergic (All) amacrine cells. All cholinergic cells contained calretinin, but calretinin-immunoreactive cells were much more numerous in both the inner nuclear and ganglion cell layers than the cholinergic cells. Glycinergic All amacrine cells have been found to contain calretinin in cat, monkey and rabbit retinas. Since All amacrine cells in rat can be selectively labeled with antibodies against parvalbumin, in a second experiment we attempted to colocalize these proteins. We found that calretinin- and parvalbumin-immunoreactive neurons belonged to distinct amacrine cell populations permitting the conclusion that, in the rat retina, All amacrine cells do not contain calretinin. The results indicate that even those amacrine cells of the mammalian retina that are highly conserved with respect to morphology and transmitter content, may differ with respect to other neurochemical characteristics, such as their calcium-binding proteins.  相似文献   

6.
A well-known feature of the mammalian retina is the inverse relation that exists in central and peripheral retina between the density of retinal ganglion cells and their dendritic field sizes. Functionally, this inverse relation is thought to represent a means by which retinal coverage is maintained, despite significant changes in ganglion cell density. While it is generally agreed that the dendritic fields of mature retinal ganglion cells reflect, in part, competitive interactions that occur during development, the issue of whether these interactions are cell class specific remains unclear. In order to examine this question, we used intracellular staining techniques and an in vitro, living retina preparation to compare the soma and dendritic field sizes of alpha and beta ganglion cells from normal retinae with those of cells located in matched areas of retinae in which the density of beta ganglion cells had been reduced selectively by neonatal removal of visual cortex areas 17, 18, and 19. Our intracellular data show that while an early, selective, reduction in beta cell density has little or no effect on the cell body and dendritic field sizes of mature alpha cells, it results in a 13% increase in the mean soma area and an 83% increase in the mean dendritic field area of surviving beta cells. This differential effect suggests that the soma and dendritic field sizes of alpha and beta ganglion cells in the mature cat retina result primarily from competitive interactions during development that are cell class specific.  相似文献   

7.
PURPOSE: To identify the low-molecular-weight retinal proteins that are the targets of serum autoantibodies in patients with glaucoma and to study the ability of these antibodies to induce retinal apoptosis. METHODS: Serum immunoreactivity against retinal proteins was examined in age-matched groups of 60 patients with normal-pressure glaucoma, 36 patients with high-pressure glaucoma, and a control group of 20 healthy subjects, by means of western blot analysis and enzyme-linked immunosorbent assay. The specificity of the immunoreactivity to small heat shock proteins, including alpha-crystallins and hsp27, was tested by immunoprecipitation of these proteins in retinal fractions. The direct effects of antibodies specific to small heat shock proteins were then studied in isolated intact human retina (ex vivo) and cultured rat retinal cells (in vitro) by immunocytochemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) technique in conjunction with fluorescence microscopy and confocal imaging. RESULTS: Serum immunoreactivity against retinal proteins with low molecular weight in patients with glaucoma was to small heat shock proteins, including alpha-crystallins and hsp27. In addition, patients with normal pressure glaucoma had a higher titer of autoantibodies to small heat shock proteins than did age-matched patients with high-pressure glaucoma or control subjects. It was observed that when antibodies against small heat shock proteins were applied directly to retina tissue or cells, they could trigger cell death through an apoptotic mechanism. CONCLUSIONS: These findings suggest that increased titers of circulating antibodies against retinal small heat shock proteins may have pathogenic significance in some patients with glaucomatous optic neuropathy.  相似文献   

8.
The murine coronavirus, mouse hepatitis virus (MHV), JHM strain, induces a biphasic retinal disease in adult BALB/c mice. In the early phase, Day 1 to Day 7, a retinal vasculitis is noted which is associated with the presence of viral proteins and infectious virus. In the late phase, Day 10 to Day 140, a retinal degeneration is associated with the absence of viral proteins, infectious virus, and inflammatory cells. The purpose of this study was to determine if viral RNA persists within the retina during the retinal degenerative phase of the disease. BALB/c mice were inoculated by the intravitreal route with 10(4.0) TCID50/5 microliters of virus. The presence of viral RNA was detected by in situ hybridization with a viral cDNA probe and viral proteins were identified by immunocytochemical staining. During the acute phase of the infection, viral RNA was found in the retina, RPE, ciliary body epithelium, and the iris epithelium. During the late phase of the infection, viral RNA was almost exclusively found within the retina and RPE and not in the anterior segment of the eye. Within the retina, viral RNA was detected in the ganglion cell layer, the inner retina, the outer retina, and the RPE cell. Immunocytochemical staining identified viral protein within the retina only from Day 1 to Day 8. This ocular disease was also associated with a persistent systemic infection. Both viral RNA and viral proteins were identified within the liver during the first 8 days. However, only viral RNA was detected in the liver from Day 8 to Day 60. These studies demonstrate that MHV established an acute infection (Day 1-8) where infectious virus and viral proteins were identified. This was followed by a persistent infection within the retina and liver where only viral RNA were detected by in situ hybridization.  相似文献   

9.
10.
Apoptosis is a genetically regulated form of cell death. Individual cells show condensed nuclear chromatin and cytoplasm, and biochemical analysis reveals fragmentation of the DNA. Ensuing cellular components, apoptotic bodies, are removed by macrophages or neighboring cells. Genes involved in the regulation of apoptosis as well as stimuli and signal transduction systems, are only beginning to be understood in the retina. Therefore, we developed a new in vivo model system for the investigation of events leading to apoptosis in the retina and the pigment epithelium. We induced apoptosis in retinal photoreceptors and the pigment epithelium of albino rats by exposure to 3000 lux of diffuse, cool white fluorescent light for short time periods of up to 120 minutes. Animals were killed at different time intervals during and after light exposure. The eyes were enucleated and the lower central retina was processed for light- and electron microscopy. DNA fragmentation was analysed in situ by TdT-mediated dUTP nick-end labeling (TUNEL) or by gel electrophoresis of total retinal DNA. We observed that the timing of apoptosis in the photoreceptors and pigment epithelium was remarkably different, the pigment epithelium showing a distinct delay of several hours before the onset of apoptosis. In photoreceptors, apoptosis was induced within 90 minutes of light exposure, with the morphological appearance of apoptosis preceding the fragmentation of DNA. In the pigment epithelium, the morphological appearance of apoptosis and DNA fragmentation were coincident. Different regulative mechanisms may lead to apoptotic cell death in the retinal photoreceptors and pigment epithelium. This in vivo model system will allow measurement of dose-responses, a potential spectral dependence and the molecular background of apoptotic mechanisms in the retina.  相似文献   

11.
The sulfur amino acid taurine and the indoleamine serotonin increases and decreases, respectively, the outgrowth from goldfish retinal explants. Taurine seems to be acting, at least partially, through an increase in calcium fluxes, and the serotonin-inhibiting effect appears to be mediated by serotonin1A receptors and cAMP. Isolated cells of postcrush goldfish retina and of retina from 5-day-old rats were cultured in the presence of taurine or serotonin. In the goldfish, the classical morphology of postcrush ganglion cells was observed. An antibody against the glycoprotein Thy-1 labelled three types of cells in the cultures of goldfish retina. The number of cells outgrowing and the length of the main neurite was measured at 5 days in culture in both species. The number of cells presenting neurites was increased in the goldfish retina by the addition of taurine, and decreased by serotonin. However, the length of the neurites was unaffected by the addition of the modulators. In the rat, only a slight decrease in the number of cells outgrowing was observed in the presence of serotonin. The incorporation of [3H]thymidine was not modified after 5 days in culture in the presence of taurine or serotonin, either in the goldfish or in the rat retina. The antibody Thy 1.1 can label retinal cells of the goldfish in vitro, one of them being ganglion cells. The trophic effect exerted by taurine in the postcrush goldfish retina needs the integrity of the tissue favoring the interaction of cells and factors, because outgrowth increases in retinal explants, but not in isolated cells.  相似文献   

12.
13.
Employing retinal explants and retrograde transport techniques, we studied the formation of the arcuate fascicles by examining the growth of the central retina, the emergence of the adult fiber layer pattern, and the projections of retinal ganglion cells in the central and peripheral retina. Sixty days prior to foveal pit formation, the distance from the incipient fovea to the optic disk was equal to the adult, even though the retinal area was only 8% of the adult. Arcuate fibers, at this age, were observed to avoid the incipient fovea, with no fascicles and few axons projecting over this region. A small population of 15.2% of the ganglion cells located within 2 mm of the incipient fovea possessed an axon with an aberrant trajectory that wound around and projected 50 to several hundred microns away from the optic disk, compared to only 3% at other retinal locations. The incidence of disorder decreased with increasing fetal age, establishing mature values in late fetal periods. These findings suggest that the area of the central retina does not increase after embryonic day 60 and that guidance factors are present that allow outgrowing ganglion cell axons to distinguish and avoid that portion of the retina that will become the fovea.  相似文献   

14.
This study determined whether retinal degeneration during diabetes includes retinal neural cell apoptosis. Image analysis of retinal sections from streptozotocin (STZ) diabetic rats after 7.5 months of STZ diabetes identified 22% and 14% reductions in the thickness of the inner plexiform and inner nuclear layers, respectively (P < 0. 001). The number of surviving ganglion cells was also reduced by 10% compared to controls (P < 0.001). In situ end labeling of DNA terminal dUTP nick end labeling (TUNEL) identified a 10-fold increase in the frequency of retinal apoptosis in whole-mounted rat retinas after 1, 3, 6, and 12 months of diabetes (P < 0.001, P < 0. 001, P < 0.01, and P < 0.01, respectively). Most TUNEL-positive cells were not associated with blood vessels and did not colocalize with the endothelial cell-specific antigen, von Willebrand factor. Insulin implants significantly reduced the number of TUNEL-positive cells (P < 0.05). The number of TUNEL-positive cells was also increased in retinas from humans with diabetes. These data indicate that retinal neural cell death occurs early in diabetes. This is the first quantitative report of an increase in neural cell apoptosis in the retina during diabetes, and indicates that neurodegeneration is an important component of diabetic retinopathy.  相似文献   

15.
As retinal histogenesis proceeds there is a pronounced increase in the expression of fibroblast growth factor (FGF), reaching its maximum in the mature retina and largely in terminal differentiated retinal neurons. Recent in vivo evidence suggests that exogenous FGF functions as a differentiation and survival factor for a wide variety of cell types including CNS neurons and that endogenous FGF may perform similar functions. We have examined the consequences of selectively and independently inhibiting FGF1 or FGF2 expression using antisense oligonucleotides in embryonic chick retinal cells, differentiating in vitro. Whether FGF1 or FGF2 expression was inhibited the results were the same: a marked reduction in neuronal photoreceptor cells differentiation, an increase in programmed cell death, but no effects on cell proliferation. Even although these two related factors promote the same final effect on retinal cells, namely, neuronal differentiation and survival, their normal combined activities or levels appear to be important in achieving this effect. Stimulation with either exogenous FGF1 or FGF2 served to increase endogenous levels of both FGF1 and FGF2 and reversed the effects of antisense blockade of either FGF1 or FGF2. Our data suggest that although other sources of FGF exist within the eye, the function of endogenous FGF in differentiating retinal neurons may be to stimulate their differentiation and promote their survival.  相似文献   

16.
The seven major classes of cells of the vertebrate neural retina are generated from a pool of multipotent progenitor cells. Recent studies suggest a model of retinal development in which both the progenitor cells and the environment change over time (Cepko, C. L., Austin, C. P., Yang, X., Alexiades, M. and Ezzeddine, D. (1996). Proc. Natl. Acad. Sci. USA 93, 589-595). We have utilized a reaggregate culture system to test this model. A labeled population of progenitors from the embryonic rat retina were cultured with an excess of postnatal retinal cells and then assayed for their cell fate choices. We found that the postnatal environment had at least two signals that affected the embryonic cells' choice of fate; one signal inhibited the production of amacrine cells and a second affected the production of cone cells. No increase in cell types generated postnatally was observed. The source of the inhibitor of the amacrine cell fate appeared to be previously generated amacrine cells, suggesting that amacrine cell number is controlled by feedback inhibition. The progenitor cell lost its ability to be inhibited for production of an amacrine cell as it entered M phase of the cell cycle. We suggest that postmitotic cells influence progenitor cell fate decisions, but that they do so in a manner restricted by the intrinsic biases of progenitor cells.  相似文献   

17.
18.
19.
In the present study we have characterized the postnatal (PN) development of the retina in the Brazilian opossum, Monodelphis domestica. Monodelphis, a small, pouchless marsupial, undergoes a protracted period of postnatal development. Using bromodeoxyuridine immunohistochemistry, we have investigated postnatal neurogenesis of the retina. In addition, we have examined the differentiation of the retina by using antibodies directed against the presynaptic terminal-associated proteins synaptotagmin, Rab3A, synaptophysin and synaptosomal-associated protein-25 (SNAP-25), and have characterized their spatial and temporal distribution during postnatal development. This study is the first systematic comparison of the developmental expression of multiple presynaptic terminal-associated proteins in relation to retinal neurogenesis and differentiation. At birth (1PN), the Monodelphis retina was relatively undifferentiated morphologically and birthdating analysis revealed mitotically active cells throughout the retina. The 8PN retina was organized into two cellular layers: an outer region of mitotically active neuroepithelial cells and an inner region of postmitotic cells. The inner plexiform layer formed between 5PN and 10PN, and exhibited unique patterns of immunoreactivity with the antibodies used in this analysis. By 25PN the retina was well laminated, and synaptotagmin-, Rab3A-, synaptophysin- and SNAP-25-like immunoreactivities exhibited distinct and specific patterns within the plexiform layers, although they had not yet achieved their mature, adult patterns. These results indicate that each of these proteins exhibits developmentally regulated changes in its cellular localization, and therefore may play important roles during morphogenesis and synaptogenesis of the vertebrate retina.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号