首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this letter, we report that a commonly used 0.35-/spl mu/m, 60-GHz-F/sub MAX/ BiCMOS SiGe monolithic microwave integrated circuit (MMIC) technology is able to provide very low phase noise signal generation in the X-band frequency range. This statement has been demonstrated using a differential LC voltage-controlled oscillator (VCO) in which varactors are realized with metal-oxide semiconductor (MOS) transistors and inductors with a patterned ground shield technology. This VCO features an output power signal in the range of -5 dBm and exhibits a phase noise of -96 dBc/Hz at a frequency offset of 100kHz from carrier and -120 dBc/Hz at a frequency offset of 1 MHz. The VCO features a tuning range of 430 MHz or 4.3% of its operating frequency. Its power consumption is in the range of 70 mW (200 mW with buffers circuits) for a chip size of 800/spl times/1000 /spl mu/m/sup 2/ (including RF probe pads).  相似文献   

2.
A compact monolithic integrated differential voltage controlled oscillator (VCO) using 0.5-/spl mu/m emitter width InP/InGaAs double-heterostructure bipolar transistors with a total chip size of 0.42 mm /spl times/ 0.46 mm is realized by using cross-coupled configuration for extremely high frequency satellite communications system applications. The device performance of F/sub max/ greater than 320 GHz at a current density of 5 mA//spl mu/m/sup 2/ and 5-V BVceo allows us to achieve a low phase noise 42.5-GHz fundamental VCO with -0.67-dBm output power. The VCO exhibits the phase noise of -106.8 dBc/Hz at 1-MHz offset and -122.3 dBc/Hz at 10-MHz offset from the carrier frequency.  相似文献   

3.
A fully integrated 5.8 GHz CMOS L-C tank voltage-controlled oscillator (VCO) using a 0.18-/spl mu/m 1P6M standard CMOS process for 5 GHz U-NII band WLAN application is presented. The VCO core circuit uses only PMOS to pursue a better phase noise performance since it has less 1/f noise than NMOS. The measurement is performed by using a FR-4 PCB test fixture. The output frequency of the VCO is from 5860 to 6026 MHz with a 166 MHz tuning range and the phase noise is -96.9 dBc/Hz at 300 kHz (or -110 dBc/Hz at 1 MHz) with V ctrl = 0 V. The power consumption of the VCO excluding buffer amplifiers is 8.1 mW at V/sub DD/ = 1.8 V and the output power is -4 dBm.  相似文献   

4.
A 14-GHz 256/257 dual-modulus prescaler is implemented using secondary feedback in the synchronous 4/5 divider on a 0.18-/spl mu/m foundry CMOS process. The dual-modulus scheme utilizes a 4/5 synchronous counter which adopts a traditional MOS current mode logic clocked D flip-flop. The secondary feedback paths limit signal swing to achieve high-speed operation. The maximum operating frequency of the prescaler is 14 GHz at V/sub DD/=1.8 V. Utilizing the prescaler, a 10.4-GHz monolithic phase-locked loop (PLL) is demonstrated. The voltage-controlled oscillator (VCO) operates between 9.7-10.4 GHz. The tuning range of the VCO is 690 MHz. The phase noise of the PLL and VCO at a 3-MHz offset with I/sub vco/=4.9 mA is -117 and -119 dBc/Hz, respectively. At the current consumption of I/sub vco/=8.1 mA, the phase noise is -122 and -122 dBc/Hz, respectively. The PLL output phase noise at a 50-kHz offset is -80 dBc/Hz. The PLL consumes /spl sim/31 mA at V/sub DD/=1.8 V.  相似文献   

5.
Kim  J.J. Lee  Y. Park  S.-B. 《Electronics letters》2004,40(17):1031-1032
A dual-ring structure of LC resonators is presented to improve the phase noise performance much further, keeping the multi-phase output capability. This dual-ring oscillator is fabricated in a 0.25 /spl mu/m CMOS process and achieves the measured phase noise of -137 dBc/Hz at 1 MHz offset from a 2.27 GHz carrier.  相似文献   

6.
A 2 V 1.8 GHz fully integrated CMOS dual-loop frequency synthesizer is designed in a standard 0.5 /spl mu/m digital CMOS process for wireless communication. The voltage-controlled oscillator (VCO) required for the low-frequency loop is designed using a ring-type VCO and achieves a tuning range of 89% from 356 to 931 MHz and a phase noise of -109.2 dBc/Hz at 600 kHz offset from 856 MHz. With an active chip area of 2000/spl times/1000 /spl mu/m/sup 2/ and at a 2 V supply voltage, the whole synthesizer achieves a tuning range from 1.8492 to 1.8698 GHz in 200 kHz steps with a measured phase noise of -112 dBc/Hz at 600 kHz offset from 1.86 GHz. The measured settling time is 128 /spl mu/s and the total power consumption is 95 mW.  相似文献   

7.
A study of phase noise in colpitts and LC-tank CMOS oscillators   总被引:1,自引:0,他引:1  
This paper presents a study of phase noise in CMOS Colpitts and LC-tank oscillators. Closed-form symbolic formulas for the 1/f/sup 2/ phase-noise region are derived for both the Colpitts oscillator (either single-ended or differential) and the LC-tank oscillator, yielding highly accurate results under very general assumptions. A comparison between the differential Colpitts and the LC-tank oscillator is also carried out, which shows that the latter is capable of a 2-dB lower phase-noise figure-of-merit (FoM) when simplified oscillator designs and ideal MOS models are adopted. Several prototypes of both Colpitts and LC-tank oscillators have been implemented in a 0.35-/spl mu/m CMOS process. The best performance of the LC-tank oscillators shows a phase noise of -142dBc/Hz at 3-MHz offset frequency from a 2.9-GHz carrier with a 16-mW power consumption, resulting in an excellent FoM of /spl sim/189 dBc/Hz. For the same oscillation frequency, the FoM displayed by the differential Colpitts oscillators is /spl sim/5 dB lower.  相似文献   

8.
A 5-GHz fully integrated full PMOS low-phase-noise LC VCO   总被引:1,自引:0,他引:1  
A 5-GHz fully integrated, full PMOS, low-phase-noise and low-power differential voltage-controlled oscillator (VCO) is presented. This circuit is implemented in a 0.35-/spl mu/m four-metal BiCMOS SiGe process. At 2.7-V power supply voltage and a total power dissipation of only 13.5 mW, the proposed VCO features a worst case phase noise of -97 dBc/Hz and -117 dBc/Hz at 100 kHz and 1 MHz frequency offset, respectively. The oscillator is tuned from 5.13 to 5.68 GHz with a tuning voltage varying from 0 to 2.7 V.  相似文献   

9.
A 37-GHz voltage controlled oscillator (VCO) fabricated in IBM's 47-GHz SiGe BiCMOS technology is presented. The VCO achieves a phase noise of -81dBc/Hz at 1-MHz offset from the carrier while delivering an output power of -30dBm to 50 /spl Omega/ buffers. Drawing 15-mA of dc current from a 3-V power supply the VCO occupies 350/spl mu/m/spl times/280/spl mu/m of silicon area. Capacitive emitter degeneration and compact layout are used to achieve high f/sub OSC//f/sub T/ ratio.  相似文献   

10.
This paper describes an integrated tuner for cable telephony in a 0.35 /spl mu/m, 27 GHz SOI BiCMOS technology. The IC integrates a complete dual-conversion signal path including upconverter, downconverter, variable-gain amplifier, LO synthesizers with fully integrated voltage-controlled oscillators, gain control circuitry, as well as digital calibration and interface circuits. It accepts signals in the 200-880 MHz band and produces a 44 MHz IF. Drawing 168 mA from a 3 V supply, the tuner system has a worst case noise factor of 7.3 dB, system phase noise below -78 dBc/Hz at a 10 kHz offset, spurs below -42 dBc for 137 5 dBmV input channels, a gain of 60 dB, and gain control range of 68 dB. The 13 mm/sup 2/ IC meets specifications across an outdoor temperature range of -40/spl deg/C to 100/spl deg/C in production lots.  相似文献   

11.
A compact carrier generation system enabling proper interoperability among quad-band GSM, WCDMA (FDD and TDD), and WLAN (802.11a/b/g) standards is developed. The implementation is achieved in 0.25-/spl mu/m BiCMOS-SiGe process. The measured tuning range is higher that 1 GHz (3.05 to 4.1 GHz) exceeding the specifications by 25%. The voltage-controlled oscillator (VCO) exhibits a phase noise of -118 and -125 dBc/Hz measured, respectively, at 400 kHz and 1 MHz offsets while drawing 2.5 mA from 2.5 V supply. The measured phase noise at 400 kHz offset of the PCS/DCS output local-oscillator (LO) signal and the GSM output LO signal is, respectively, -124 dBc/Hz and -130 dBc/Hz.  相似文献   

12.
Design of wide-band CMOS VCO for multiband wireless LAN applications   总被引:4,自引:0,他引:4  
In this paper, a general design methodology of low-voltage wide-band voltage-controlled oscillator (VCO) suitable for wireless LAN (WLAN) application is described. The applications of high-quality passives for the resonator are introduced: 1) a single-loop horseshoe inductor with Q > 20 between 2 and 5 GHz for good phase noise performance; and 2) accumulation MOS (AMOS) varactors with C/sub max//C/sub min/ ratio of 6 to provide wide-band tuning capability at low-voltage supply. The adverse effect of AMOS varactors due to high sensitivity is examined. Amendment using bandswitching topology is suggested, and a phase noise improvement of 7 dB is measured to prove the concept. The measured VCO operates on a 1-V supply with a wide tuning range of 58.7% between 3.0 and 5.6 GHz when tuned between /spl plusmn/0.7 V. The phase noise is -120 dBc/Hz at 3.0 GHz, and -114.5 dBc/Hz at 5.6 GHz, with the nominal power dissipation between 2 and 3 mW across the whole tuning range. The best phase noise at 1-MHz offset is -124 dBc/Hz at the frequency of 3 GHz, a supply voltage of 1.4 V, and power dissipation of 8.4 mW. When the supply is reduced to 0.83 V, the VCO dissipates less than 1 mW at 5.6 GHz. Using this design methodology, the feasibility of generating two local oscillator frequencies (2.4-GHz ISM and 5-GHz U-NII) for WLAN transceiver using a single VCO with only one monolithic inductor is demonstrated. The VCO is fabricated in a 0.13-/spl mu/m partially depleted silicon-on-insulator CMOS process.  相似文献   

13.
A fully symmetrical integrated quadrature LC oscillator with a wide tuning range of 1.2GHz is presented. The quadrature voltage-controlled oscillator (QVCO) is implemented using a symmetrical coupling method which has been used to produce the large tuning range with a low control voltage and to achieve good phase noise performance in 0.18/spl mu/m complementary metal oxide semiconductor technology. The measured phase noise at 1MHz offset from the center frequency (5.5GHz) is -115 dBc/Hz. The QVCO draws 3.2mA from a 1.8V supply. The equivalent phase error between I and Q signal was at most 0.5/spl deg/.  相似文献   

14.
The linearity of a 0.18-/spl mu/m CMOS power amplifier (PA) is improved by adopting a deep n-well (DNW). To find the reason for the improvement, bias dependent nonlinear parameters of the test devices are extracted from a small-signal model and a Volterra series analysis for an optimized nMOS PA with a proper matching circuit is carried out. From the analysis, it is revealed that the DNW of the nMOS lowers the harmonic distortion generated from the intrinsic gate-source capacitance (C/sub gs/), which is the dominant nonlinear source, and partially from drain junction capacitance (C/sub jd/). Single-ended and differential PAs for 2.45-GHz WLAN are designed and fabricated using a 0.18-/spl mu/m standard CMOS process. The single-ended PA with the DNW improves IMD3 and IMD5 about 5 dB with identical power performances, i.e., 20 dBm of P/sub out/, 18.7 dB of power gain and 31% of power-added efficiency (PAE) at P/sub 1dB/. The IMD3 and IMD5 are below -40 dBc and -47dBc, respectively. The differential PA with the DNW also shows about 7 dB improvements of IMD3 and IMD5 with 20.2 dBm of P/sub out/, 18.9 dB of power gain and 35% of PAE at P/sub 1dB/. The IMD3 and IMD5 are below -45 dB and -57 dBc, respectively. These performances of the linear PAs are state-of-the-art results.  相似文献   

15.
The tuning curve of an LC-tuned voltage-controlled oscillator (VCO) substantially deviates from the ideal curve 1//spl radic/(LC(V)) when a varactor with an abrupt C(V) characteristic is adopted and the full oscillator swing is applied directly across the varactor. The tuning curve becomes strongly dependent on the oscillator bias current. As a result, the practical tuning range is reduced and the upconverted flicker noise of the bias current dominates the 1/f/sup 3/ close-in phase noise, even if the waveform symmetry has been assured. A first-order estimation of the tuning curve for MOS-varactor-tuned VCOs is provided. Based on this result, a simplified phase-noise model for double cross-coupled VCOs is derived. This model can be easily adapted to cover other LC-tuned oscillator topologies. The theoretical analyses are experimentally validated with a 0.25 /spl mu/m CMOS fully integrated VCO for 5 GHz wireless LAN receivers. By eliminating the bias current generator in a second oscillator, the close-in phase noise improves by 10 dB and features -70 dBc/Hz at 10 kHz offset. The 1/f/sup 2/ noise is -132 dBc/Hz at 3 MHz offset. The tuning range spans from 4.6 to 5.7 GHz (21%) and the current consumption is 2.9 mA.  相似文献   

16.
Cao  C. Seok  E. O  K.K. 《Electronics letters》2006,42(4):208-210
A 192 GHz cross-coupled push-push voltage controlled oscillator (VCO) is fabricated using the UMC 0.13 /spl mu/m CMOS logic process. The VCO can be tuned from 191.4 to 192.7 GHz. The VCO provides output power of /spl sim/-20 dBm and phase noise of /spl sim/-100 dBc/Hz at 10 MHz offset, while consuming 11 mA from a 1.5 V supply.  相似文献   

17.
A fully integrated quadrature VCO at 8 GHz is presented. The VCO is implemented using a transformer-based LC tank in 0.18 /spl mu/m CMOS technology, in which two VCOs are coupled to generate I-Q signals. The VCO is realized employing the drain-gate transformer feedback configuration proposed here. This makes use of the quality factor enhancement in the resonator using a transformer and the deep switching-off technique by controlling gate bias. By turning off switching transistors of the differential VCO core deeply, the phase noise performance is improved more than 10 dB. The measured phase noise values are -110 and -117 dBc/HZ at the offset frequencies of 600 kHz and 1 MHz respectively. The tuning range of 250 MHz is achieved with the control voltage from 0 to 1 V. The VCO draws 8 mA in two differential core circuits from 3 V supply. When the bias voltage goes down to 2.5 V, the phase noise decrease only 2 dB compared to that of 3 V bias. The VCO performances are compared with previously reported quadrature Si VCOs in 5/spl sim/12 GHz frequency range.  相似文献   

18.
A 1.8 GHz fractional-N frequency synthesizer implemented in 0.6 /spl mu/m CMOS with an on-chip multiphase voltage-controlled oscillator (VCO) exhibits no spurs resulting from phase interpolation. The proposed architecture randomly selects output phases of a multiphase VCO for fractional frequency division to eliminate spurious tones. Measured phase noise at 1.715 GHz is lower than -80 dBc/Hz within a 20 kHz loop bandwidth and -118 dBc/Hz at 1 MHz offset with no fractional spurs above -70 dBc/Hz. The synthesizer has a frequency resolution step smaller than 10 Hz. The chip consumes 52 mW at 3.3 V and occupies 3.7 mm/spl times/2.9 mm.  相似文献   

19.
The design of a low-voltage 40-GHz complementary voltage-controlled oscillator (VCO) with 15% frequency tuning range fabricated in 0.13-/spl mu/m partially depleted silicon-on-insulator (SOI) CMOS technology is reported. Technological advantages of SOI over bulk CMOS are demonstrated, and the accumulation MOS (AMOS) varactor limitations on frequency tuning range are addressed. At 1.5-V supply, the VCO core and each output buffer consumes 11.25 mW and 3 mW of power, respectively. The measured phase noise at 40-GHz is -109.73 dBc/Hz at 4-MHz offset from the carrier, and the output power is -8 dBm. VCO performance using high resistivity substrate (/spl sim/300-/spl Omega//spl middot/cm) has the same frequency tuning range but 2 dB better phase noise compared with using low resistivity substrate (10 /spl Omega//spl middot/cm). The VCO occupies a chip area of only 100 /spl mu/m by 100 /spl mu/m (excluding pads).  相似文献   

20.
A new low-voltage pseudo-differential CMOS transconductor using transistors in the saturation region is presented. It keeps the input common-mode voltage constant, while its transconductance is easily tunable through a DC voltage preserving linearity for a moderate range of G/sub m/ values. Post-layout results for a 2.7 V-0.5 /spl mu/m CMOS design dissipating less than 1.5 mW show a 1:2 G/sub m/ tuning range with an almost constant bandwidth over 600 MHz. Total harmonic distortion figures are below -60 dB over the whole range at 10 MHz up to a 100 /spl mu/A/sub p-p/ differential output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号